首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   559篇
  免费   7篇
  国内免费   5篇
安全科学   24篇
废物处理   23篇
环保管理   97篇
综合类   89篇
基础理论   111篇
环境理论   2篇
污染及防治   163篇
评价与监测   42篇
社会与环境   11篇
灾害及防治   9篇
  2022年   3篇
  2021年   9篇
  2020年   11篇
  2019年   6篇
  2018年   10篇
  2017年   19篇
  2016年   13篇
  2015年   11篇
  2014年   13篇
  2013年   67篇
  2012年   21篇
  2011年   39篇
  2010年   18篇
  2009年   21篇
  2008年   30篇
  2007年   23篇
  2006年   19篇
  2005年   19篇
  2004年   19篇
  2003年   22篇
  2002年   14篇
  2001年   19篇
  2000年   8篇
  1999年   4篇
  1998年   6篇
  1997年   6篇
  1996年   2篇
  1995年   8篇
  1994年   5篇
  1993年   4篇
  1991年   6篇
  1990年   7篇
  1989年   8篇
  1988年   4篇
  1987年   6篇
  1986年   2篇
  1985年   2篇
  1984年   10篇
  1983年   8篇
  1982年   7篇
  1981年   5篇
  1979年   7篇
  1977年   2篇
  1976年   3篇
  1975年   3篇
  1973年   3篇
  1972年   2篇
  1971年   2篇
  1968年   2篇
  1961年   2篇
排序方式: 共有571条查询结果,搜索用时 31 毫秒
31.
Abstract

A plasma-assisted ammonia injection technique was previously demonstrated as having the potential to remove NOx from combustion flue gases at SCR-comparable levels without the use of catalysts. However, these demonstrations did not prove the advantage of plasma assistance because they did not explicitly account for enhanced radical production by bulk thermal heating. An experiment using hot ammonia injection was performed to separate this thermal effect from the effect of radical production via interaction with a plasma. Under excess air conditions, results show that a thermal effect does provide improved NOx reduction, but not to the level achieved with the use of a plasma source. However, heating the injection gases provides only a minor improvement in NOx reduction at NH3/NOx ratios and temperatures typical of commercial cold SNCR applications. The plasma effect in ammonia radical injection was also found to be significant, accounting for an additional 15% to 35% of absolute NOx reduction beyond any thermal benefit at typical excess air conditions. The ammonia radical injection technique continues to show promise as an effective NOx reduction alternative.  相似文献   
32.
Abstract

The removal system for the absorption of CO2 with amines and NH3 is an advanced air pollution control device to reduce greenhouse gas emissions. Absorption of CO2 by amines and NH3 solutions was performed in this study to derive the reaction kinetics. The absorption of CO2 as encountered in flue gases into aqueous solutions of monoethanolamine (MEA), diethanolamine (DEA), and NH3 was carried out using a stirred vessel with a plane gas-liquid interface at 50 °C. Various operating parameters were tested to determine the effect of these variables on the absorption kinetics of the reactants in both gas and liquid phases and the effect of competitions between various reactants on the mass-transfer rate.

The observed absorption rate increases with increasing gas-liquid concentration, solvent concentration, temperature, and gas flow rate, but changes with the O2 concentration and pH value. The absorption efficiency of MEA is better than that of NH3 and DEA, but the absorption capacity of NH3 is the best. The active energies of the MEA and NH3 with CO2 are 33.19 and 40.09 kJ/mol, respectively.  相似文献   
33.
Abstract

The multivariate receptor model Unmix has been used to analyze a 3-yr PM2.5 ambient aerosol data set collected in Phoenix, AZ, beginning in 1995. The analysis generated source profiles and overall average percentage source contribution estimates (SCEs) for five source categories: gasoline engines (33 ± 4%), diesel engines (16 ± 2%), secondary SO4 2? (19 ± 2%), crustal/soil (22 ± 2%), and vegetative burning (10 ± 2%). The Unmix analysis was supplemented with scanning electron microscopy (SEM) of a limited number of filter samples for information on possible additional low-strength sources. Except for the diesel engine source category, the Unmix SCEs were generally consistent with an earlier multivariate receptor analysis of essentially the same data using the Positive Matrix Factorization (PMF) model. This article provides the first demonstration for an urban area of the capability of the Unmix receptor model.  相似文献   
34.
This paper summarizes a joint Superfund Innovative Technology Evaluation (SITE) project on slurry-phase biodegradation and a project to collect information for the data base on Best Demonstrated Available Technologies (BOAT). In this 12-week study, a creosote contaminated soil from the Burlington Northern Superfund site in Brainerd, Minnesota was used to evaluate the effectiveness of the bioslurry reactors. During the demonstration, five 64-liter stainless steel bioreactors, equipped with agitation, aeration and temperature controls were used. The pilot scale study employed a 30 percent slurry, an inoculum of indigenous polynuclear aromatic hydrocarbon (PAH) degraders, and inorganic nutrients.

Total PAH degradation averaged 93.4 ± 3.2 percent over all five operating reactors in the 12 weeks with 97.4 percent degradation of the 2- and 3-ring PAHs and 90 percent degradation of the 4- to 6-ring PAHs. A study of the air emissions, both semivolatile compounds such as naphthalene, anthracene, and phenanthrene and volatile compounds such as toluene, xylene, and benzene, from the units showed that the greatest amount of emissions occurred during the loading of the reactors and during the first few days of operation. Therefore, it may not be cost-effective to require elaborate emissions controls unless there are significant quantities of volatile compounds present in the soil or water to be treated in a bioslurry reactor system.  相似文献   
35.
Fixed beds of sorbent media are used for the evaluation of poiynuclear aromatic hydrocarbons (PAH) present in air. Twostage sampling and separate extraction and analyses of PAH associated with aerosol particles and those present in the vapor state are usually performed. The ability of commonly used sorbents to retain particulate matter introduces a potential for reducing the time and cost of PAH evaluation procedures.

The filtration efficiency of three sorbent media, Florisil, XAD-2, and polyurethanefoam (PUF), for particles in 0.1 to 1 µm size range was studied using airflow rates from 4 to 2501 /mm through a PS 1 sorbent cartridge. Theoretical considerations were used to identify the principal filtration mechanisms and to assess the predictability of the aerosol filtration performance of sorbent filters. The results of this study indicate XAD-2 to be an efficient filtration medium owing to the electrostatic enhancement of capturing and retaining aerosol particles.

As a result of theoretical considerations, Brownian diffusion and inertial deposition were found to be major filtration mechanisms accompanied by electrostatic effects. While the efficiency of the diffusional deposition mechanism was reasonably well predicted with available theories, modeling of submicron particle impaction at higher fluid velocities appeared to be inadequate. Further developments are suggested to improve our understanding of filtration phenomena in sorbent beds under high flow rate conditions.  相似文献   
36.
This study proposes the use of multi-activity network data envelopment analysis to appraise how incineration plants in Taiwan perform. Sample data from 2006 is used to examine the trade-offs between efficiency enhancement and pollution abatement. The respective efficiencies of the waste treatment and electricity generation are also assessed in a unified framework. The empirical results indicate that it is more important to improve the efficiency of waste treatment activity than of electricity generation activity in order to enhance the overall performance of Taiwan's incinerators. Since ownership, location and length of operations do not in general affect their performance, any improvement has to come from the careful monitoring of each process of the waste treatment operations. Furthermore, given that the policy in Taiwan has moved away from incineration to recycling, the problem of an over-supply of incinerators may become apparent in the near future. Our results indicate that the availability of capacity size may be an important factor when policy-makers consider whether to close down some existing incinerators.  相似文献   
37.
The mesostructured materials MCM-41 and SBA-15 were studied as possible supports of bromocresol green (BG) dye impregnation for the ammonia gas detection because of their large surface area, high regenerative property, and high thermal stability. X-ray diffraction, transmission electron microscopy, scanning electron microscope, and N2 adsorption analysis were used to characterize the prepared materials. These materials could sense ammonia via visible color change from yellowish-orange to blue color. The color change process of the nanostructured materials was fully reversible during 10 cyclic tests. The results indicated that the ammonia absorption responses of the two nanostructured materials were both very sensitive, and high linear correlation and high precision were achieved. As the gaseous ammonia concentrations were 50 and 5 ppmv, the response times for the SBA-15/BG were only 1 and 5 min, respectively. Moreover the BG dye-impregnated SBA-15 was less affected by the variation in the relative humidity. It also had faster response for the detection of NH3, as well as lower manufacturing price as compared to that of the dye-impregnated MCM-41. Such feature enables SBA-15/BG to be a very promising material for the detection of ammonia gas.  相似文献   
38.
Aerosol distributions from two aircraft lidar campaigns conducted in the California Central Valley are compared in order to identify seasonal variations. Aircraft lidar flights were conducted in June 2003 and February 2007. While the ground PM2.5 (particulate matter with diameter  2.5 μm) concentration was highest in the winter, the aerosol optical depth (AOD) measured from the MODIS and lidar instruments was highest in the summer. A multiyear seasonal comparison shows that PM2.5 in the winter can exceed summer PM2.5 by 68%, while summer AOD from MODIS exceeds winter AOD by 29%. Warmer temperatures and wildfires in the summer produce elevated aerosol layers that are detected by satellite measurements, but not necessarily by surface particulate matter monitors. Temperature inversions, especially during the winter, contribute to higher PM2.5 measurements at the surface. Measurements of the mixing layer height from lidar instruments provide valuable information needed to understand the correlation between satellite measurements of AOD and in situ measurements of PM2.5. Lidar measurements also reflect the ammonium nitrate chemistry observed in the San Joaquin Valley, which may explain the discrepancy between the MODIS AOD and PM2.5 measurements.  相似文献   
39.
In this study, a SYBR green quantitative real-time PCR was developed to quantify and detect the Legionella spp. in various environmental water samples. The water samples were taken from watershed, water treatment plant, and thermal spring area in Taiwan. Legionella was detected in 13.6 % (24/176), and the detection rate for river water, raw drinking water, and thermal spring water was 10, 21.4, and 16.6 %, respectively. Using real-time PCR, concentration of Legionella spp. in detected samples ranged between 9.75?×?104 and 3.47?×?105?cells/L in river water, 6.92?×?104 and 4.29?×?105?cells/L in raw drinking water, and 5.71?×?104 and 2.12?×?106?cells/L for thermal spring water samples. The identified species included Legionella pneumophila (20.8 %), Legionella jordanis (4.2 %), Legionella nautarum (4.2 %), Legionella sp. (4.2 %), and uncultured Legionella sp. (66.6 %). The presence of L. pneumophila in aquatic environments suggested a potential public health threat that must be further examined.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号