首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17041篇
  免费   762篇
  国内免费   6062篇
安全科学   1191篇
废物处理   1041篇
环保管理   1373篇
综合类   9486篇
基础理论   2920篇
环境理论   2篇
污染及防治   5812篇
评价与监测   670篇
社会与环境   622篇
灾害及防治   748篇
  2024年   7篇
  2023年   261篇
  2022年   805篇
  2021年   679篇
  2020年   570篇
  2019年   514篇
  2018年   624篇
  2017年   766篇
  2016年   787篇
  2015年   1005篇
  2014年   1309篇
  2013年   1848篇
  2012年   1470篇
  2011年   1562篇
  2010年   1136篇
  2009年   1083篇
  2008年   1166篇
  2007年   1056篇
  2006年   931篇
  2005年   708篇
  2004年   494篇
  2003年   609篇
  2002年   538篇
  2001年   442篇
  2000年   470篇
  1999年   512篇
  1998年   455篇
  1997年   375篇
  1996年   347篇
  1995年   307篇
  1994年   252篇
  1993年   201篇
  1992年   159篇
  1991年   95篇
  1990年   70篇
  1989年   57篇
  1988年   47篇
  1987年   32篇
  1986年   25篇
  1985年   14篇
  1984年   15篇
  1983年   18篇
  1982年   11篇
  1981年   12篇
  1979年   2篇
  1978年   3篇
  1976年   3篇
  1975年   5篇
  1974年   2篇
  1966年   1篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
41.
戴亮  赵伟繁  张洪伟  韩涛  张康 《环境工程》2020,38(12):70-77
重金属带来的环境风险日益严峻,利用污泥生物炭去除水中重金属污染方面的研究得到了广泛关注。结合当前国内外研究现状,归纳了不同条件下制备的污泥生物炭对水中重金属,如Cd、Pb、Cr、As等的吸附机理,污泥生物炭对大多数重金属的吸附满足物理吸附和化学吸附的多重作用,可通过增加生物炭表面有效基团及有效吸附位点提升吸附性能。同时,总结了影响吸附效率的各种因素,探究了污泥生物炭的再生问题,并对今后污泥生物炭去除水中重金属的研究方向做出了展望。  相似文献   
42.
On-road driving emissions of six liquefied natural gas(LNG) and diesel semi-trailer towing vehicles(STTVs) which met China Emission Standard IV and V were tested using Portable Emission Measurement System(PEMS) in northern China.Emission characteristics of these vehicles under real driving conditions were analyzed and proved that on-road emissions of heavy-duty vehicles(HDVs) were underestimated in the past.There were large differences among LNG and diesel vehicles, which also existed between China V vehicles and China IV vehicles.Emission factors showed the highest level under real driving conditions, which probably be caused by frequent acceleration, deceleration, and start-stop.NOx emission factors ranged from 2.855 to 20.939 g/km based on distance-traveled and 6.719–90.557 g/kg based on fuel consumption during whole tests, which were much higher than previous researches on chassis dynamometer.It was inferred from tests that the fuel consumption rate of the test vehicles had a strong correlation with NOx emission, and the exhaust temperature also affected the efficiency of Selected Catalytic Reduction(SCR) aftertreatment system, thus changing the NOx emission greatly.THC emission factors of LNG vehicles were 2.012–10.636 g/km, which were much higher than that of diesel vehicles(0.029–0.185 g/km).Unburned CH_4 may be an important reason for this phenomenon.Further on-road emission tests, especially CH_4 emission test should be carried out in subsequent research.In addition, the Particulate Number(PN) emission factors of diesel vehicles were at a very high level during whole tests, and Diesel Particulate Filter(DPF)should be installed to reduce PN emission.  相似文献   
43.
Wastewater reclamation and reuse has been proved to be an effective way to relieve the fresh water crisis. However, toxic contaminants remaining in reclaimed water could lead to potential risk for reuse, and the conventional water quality standards have difficulty guaranteeing the safety of reclaimed water. Bioassays can vividly reflect the integrated biological effects of multiple toxic substances in water as a whole, and could be a powerful tool for evaluating the safety of reclaimed water. Therefore, in this study, the advantages and disadvantages of using bioassays for evaluating the safety of reclaimed water were compared with those of conventional water quality standards. Although bioassays have been widely used to describe the toxic effects of reclaimed water and treatment efficiency of reclamation techniques, a single bioassay cannot reflect the complex toxicity of reclaimed water, and a battery of bioassays involving multiple biological effects or in vitro tests with specific toxicity mechanisms would be recommended. Furthermore, in order to evaluate the safety of reclaimed water based on bioassay results, various methods including potential toxicology, the toxicity unit classification system, and a potential eco-toxic effects probe are summarized as well. Especially, some integrated ranking methods based on a bioassay battery involving multiple toxicity effects are recommended as useful tools for evaluating the safety of reclaimed water, which will benefit the promotion and guarantee the rapid development of the reclamation and reuse of wastewater.  相似文献   
44.
Glycine(Gly) is ubiquitous in the atmosphere and plays a vital role in new particle formation(NPF).However,the potential mechanism of its on sulfuric acid(SA)-ammonia(A)clusters formation under various atmospheric conditions is still ambiguous.Herein,a(Gly)_x·(SA)_y·(A)_z(z≤x+y≤3) multicomponent system was investigated by using density functional theory(DFT) combined with Atmospheric Cluster Dynamics Code(ACDC) at different temperatures and precursor concentrations.The results show that Gly,with one carboxyl(-COOH) and one amine(-NH_2) group,can interact strongly with SA and A in two directions through hydrogen bonds or proton transfer.Within the relevant range of atmospheric concentrations,Gly can enhance the formation rate of SA-A-based clusters,especially at low temperature,low [SA],and median [A].The enhancement(R) of Gly on NPF can be up to 340 at T=218.15 K,[SA]=10~4,[A]=10~9,and [Gly]=10~7 molecules/cm~3.In addition,the main growth paths of clusters show that Gly molecules participate into cluster formation in the initial stage and eventually leave the cluster by evaporation in subsequent cluster growth at low [Gly],it acts as an important "transporter" to connect the smaller and larger cluster.With the increase of [Gly],it acts as a "participator" directly participating in NPF.  相似文献   
45.
Cake layer formation is inevitable over time for ultrafiltration (UF) membrane-based drinking water treatment. Although the cake layer is always considered to cause membrane fouling, it can also act as a “dynamic protection layer”, as it further adsorbs pollutants and dramatically reduces their chance of getting to the membrane surface. Here, the UF membrane fouling performance was investigated with pre-deposited loose flocs in the presence of humic acid (HA). The results showed that the floc dynamic protection layer played an important role in removing HA. The higher the solution pH, the more negative the floc charge, resulting in lower HA removal efficiency due to the electrostatic repulsion and large pore size of the floc layer. With decreasing solution pH, a positively charged floc dynamic protection layer was formed, and more HA molecules were adsorbed. The potential reasons were ascribed to the smaller floc size, greater positive charge, and higher roughness of the floc layer. However, similar membrane fouling performance was also observed for the negative and positive floc dynamic protection layers due to their strong looseness characteristics. In addition, the molecular weight (MW) distribution of HA also played an important role in UF membrane fouling behavior. For the small MW HA molecules, the chance of forming a loose cake layer was high with a negatively charged floc dynamic protection layer, while for the large MW HA molecules it was high with a positively charged floc dynamic protection layer. As a result, slight UF membrane fouling was induced.  相似文献   
46.
Hydrilla verticillata(waterthyme) has been successfully used for phytoremediation in arsenic(As) contaminated water.To evaluate the effects of environmental factors on phytoremediation,this study conducted a series of orthogonal design experiments to determine optimal conditions,including phosphorus(P),nitrogen(N),and arsenate(As(Ⅴ))concentrations and initial pH levels,for As accumulation and biotransformation using this aquatic plant species,while also analyzing As species transformation in culture media after 96-hr exposure.Analysis of variance and the signal-to-noise ratio were used to identify both the effects of these environmental factors and their optimal conditions for this purpose.Results indicated that both N and P significantly impacted accumulation,and N was essential in As species transformation.High N and intermediate P levels were critical to As accumulation and biotransformation by H.verticillata,while high N and low P levels were beneficial to As species transformation in culture media.The highest total arsenic accumulation was(197.2±17.4) μg/g dry weight when As(V) was at level 3(375μg/L),N at level 2(4 mg/L),P at level 1(0.02 mg/L),and pH at level 2(7).Although H.verticillata is highly efficient in removing As(Ⅴ) from aquatic environments,its use could be potentially harmful to both humans and the natural environment due to its release of highly toxic arsenite.For cost-effective and ecofriendly phytoremediation of As-contaminated water,both N and P are helpful in regulating As accumulation and transformation in plants.  相似文献   
47.
Water-uptakes of pure sodium carbonate(Na_2CO_3),pure β-alanine and internally mixedβ-alanine/Na_2CO_3 aerosol particles with different mole ratios are first monitored using attenuated total reflectance Fourier transform infrared spectroscopy(ATR-FTIR) technique.For pure Na_2CO_3 aerosol particles,combining the absorptions at 877 and 1422 cm-1 with abrupt water loss shows the efflorescence relative humidity(ERH) of 62.9%–51.9%.Upon humidifying,solid Na_2CO_3 firstly absorbs water to from Na_2CO_3·H2 O crystal at 72.0% RH and then deliquesces at 84.5% RH(DRH).As for pure β-alanine particles,the crystallization takes place in the range of 42.4%–33.2% RH and becomes droplets at ~ 88.2% RH.When β-alanine is mixed with Na_2CO_3 at various mole ratios,it shows no efflorescence of Na_2CO_3 whenβ-alanine to Na_2CO_3 mole ratio(OIR) is 2:1.For 1:1 and 1:2 β-alanine/Na_2CO_3 aerosols,the ERHs of Na_2CO_3 are 51.8%–42.3% and 57.1%–42.3%,respectively.While β-alanine crystal appears from 62.7% RH for 2:1 and 59.4% RH for both 1:1 and 1:2 particles and lasts to driest state.On hydration,the DRH is 44.7%–75.2% for Na_2CO_3 with the OIR of 1:1 and 44.7%–69.0%for 1:2 mixture,and those of β-alanine are 74.8% for 2:1 mixture and 68.9% for two others.After the first dehumidification–humidification,all the water contents decrease despite of constituent fraction.And at ~ 92% RH,the remaining water contents are 92%,89% and 82%at ~ 92% RH,corresponding to OIR of 2:1,1:1 and 1:2 mixed system,respectively.  相似文献   
48.
Plants constitute a major element of constructed wetlands(CWs).In this study,a coupled system comprising an integrated vertical flow CW(IVCW) and a microbial fuel cell(MFC) for swine wastewater tre atment was developed to research the effects of macrophytes commonly employed in CWs,Canna indica,Acorus calamus,and Ipomoea aquatica,on decontamination and electricity production in the system.Because of the different root types and amounts of oxygen released by the roots,the rates of chemical oxygen demand(COD) and ammonium nitrogen(NH_4~+-N) removal from the swine wastewater differed as well.In the unplanted,Canna indica,Acorus calamus,and Ipomoea aquatica systems,the COD removal rates were 80.20%,88.07%,84.70%,and 82.20%,respectively,and the NH_4~+-N removal rates were 49.96%,75.02%,70.25%,and 68.47%,respectively.The decontamination capability of the Canna indica system was better than those of the other systems.The average output voltages were 520±42,715±20,660±27,and 752±26 mV for the unplanted,Canna indica,Acorus calamus,and Ipomoea aquatica systems,respectively,and the maximum power densities were 0.2230,0.4136,0.3614,and0.4964 W/m~3,respectively.Ipomoea aquatica had the largest effect on bioelectricity generation promotion.In addition,electrochemically active bacteria,Geobacter and Desulfuromonas,were detected in the anodic biofilm by high-throughput sequencing analysis,and Comamonas(Proteobacteria),which is widely found in MFCs,was also detected in the anodic biofilm.These results confirmed the important role of plants in IVCW-MFCs.  相似文献   
49.
F-V_2 O_5-WO3/Ti02 catalysts were prepared by the impregnation method.As the content of F ions increased from 0.00 to 0.35 wt.%,the NO conversion of F-V_2 O_5-WO_3/TiO_2 catalysts initially increased and then decreased.The 0.2 F-V_2 O_5-WO_3/TiO_2 catalyst(0.2 wt.% F ion)exhibited the best denitration(De-NOx) performance,with more than 95% NO conversion in the temperature range 160-360℃,and 99.0% N2 selectivity between 110 and 280℃.The addition of an appropriate amount of F ions eroded the surface morphology of the catalyst and reduced its grain size,thus enhancing the NO conversion at low temperature as well as the sulfur and water resistance of the V_2 O_5-WO3/Ti02 catalyst.After selective catalytic reduction(SCR) reaction in a gas flow containing SO_2 and H_2 O,the number of NH3 adsorption sites,active component content,specific surface area and pore volume decreased to different degrees.Ammonium sulfate species deposited on the catalyst surface,which blocked part of the active sites and reduced the NO conversion performance of the catalyst.On-line thermal regeneration could not completely recover the catalyst activity,although it prolonged the cumulative life of the catalyst.In addition,a mechanism for the effects of S02 and H_2 O on catalyst NO conversion was proposed.  相似文献   
50.
PM_(2.5) separator directly affects the accuracy of PM_(2.5) sampling.The specification testing and evaluation for PM_(2.5) separator is particularly important,especially under China's wide variation of terrain and climate.In this study,first a static test apparatus based on polydisperse aerosol was established and calibrated to evaluate the performance of the PM_(2.5) separators.A uniform mixing chamber was developed to make particles mix completely.The aerosol concentration relative standard deviations of three test points at the same horizontal chamber position were less than 0.57%,and the particle size distribution obeyed logarithmic normal distribution with an R~2 of 0.996.The flow rate deviation between the measurement and the set point flow rate agreed to within ± 1.0% in the range of -40 to 50℃.Secondly,the separation,flow and loading characteristics of three cyclone separators(VSCC-A,SCC-A and SCC112) were evaluated using this system.The results showed that the 50% cutoff sizes(D_(50)) of the three cyclones were 2.48,2.47 and 2.44 μm when worked at the manufacturer's recommended flow rates,respectively.The geometric standard deviation(GSD) of the capture efficiency of VSCCA was 1.23,showed a slightly sharper than SCC-A(GSD = 1.27),while the SCC112 did not meet the relevant indicator(GSD = 1.2 ± 0.1) with a GSD = 1.44.The flow rate and loading test had a great effect on D_(50),while the GSD remained almost the same as before.In addition,the maintenance frequency under different air pollution conditions of the cyclones was summarized according to the loading test.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号