首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9772篇
  免费   364篇
  国内免费   3542篇
安全科学   734篇
废物处理   644篇
环保管理   859篇
综合类   5067篇
基础理论   1644篇
环境理论   2篇
污染及防治   3621篇
评价与监测   392篇
社会与环境   319篇
灾害及防治   396篇
  2024年   5篇
  2023年   149篇
  2022年   480篇
  2021年   388篇
  2020年   281篇
  2019年   262篇
  2018年   352篇
  2017年   456篇
  2016年   409篇
  2015年   549篇
  2014年   801篇
  2013年   1044篇
  2012年   897篇
  2011年   888篇
  2010年   687篇
  2009年   654篇
  2008年   733篇
  2007年   584篇
  2006年   495篇
  2005年   367篇
  2004年   287篇
  2003年   352篇
  2002年   304篇
  2001年   252篇
  2000年   260篇
  1999年   244篇
  1998年   248篇
  1997年   242篇
  1996年   222篇
  1995年   173篇
  1994年   118篇
  1993年   122篇
  1992年   104篇
  1991年   79篇
  1990年   54篇
  1989年   26篇
  1988年   27篇
  1987年   10篇
  1986年   17篇
  1985年   11篇
  1984年   11篇
  1983年   8篇
  1982年   9篇
  1981年   8篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1972年   2篇
  1971年   1篇
  1968年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
601.

Silicon-based fertilizers and soil amendments can have direct and indirect positive influences on cultivated plants. The solid forms of Si-based substances, the most widespread in use, are efficient only at high application rates due to their low level of solubility. Several types of Si-based substances such as fumed silica, slags from the iron and steel industry, modified slags, and a Si-rich product were tested using barley and pea as silicon accumulative and non-accumulative plants, respectively, at two application rates. The plants were grown under toxic concentrations of heavy metals in a greenhouse. Si-rich materials high in water-soluble Si had a positive effect at both the low and high application rates, and for both plant species. This type of substance can be regarded as Si fertilizer, demonstrating greater efficiency at a low application rate and lessened efficiency at a high application rate for protection of the cultivated plants against accumulation of the heavy metals.

  相似文献   
602.
Environmental Science and Pollution Research - Improved understanding of the fractionation and geochemical characteristic of rare earth elements (REEs) from steel plant emissions is important due...  相似文献   
603.
A simple online headspace solid-phase microextraction (HS-SPME) coupled with the gas chromatography-mass spectrometry (GC-MS) method was developed for simultaneous determination of trace amounts of nine estrogenic odorant alkylphenols and chlorophenols and their derivatives in water samples. The extraction conditions of HS-SPME were optimized including fiber selection, extraction temperature, extraction time, and salt concentration. Results showed that divinylbenzene/Carboxen/polydimethylsiloxane (DVB/CAR/PDMS) fiber was the most appropriate one among the three selected commercial fibers, and the optimal extraction temperature, time, and salt concentration were 70 °C, 30 min, and 0.25 g/mL, respectively. The developed method was validated and showed good linearity (R 2?>?0.989), low limit of detection (LOD, 0.002–0.5 μg/L), and excellent recoveries (76–126 %) with low relative standard deviation (RSD, 0.7–12.9 %). The developed method was finally applied to two surface water samples and some of these target compounds were detected. All these detected compounds were below their odor thresholds, except for 2,4,6-TCAS and 2,4,6-TBAS wherein their concentrations were near their odor thresholds. However, in the two surface water samples, these detected compounds contributed to a certain amount of estrogenicity, which seemed to suggest that more attention should be paid to the issue of estrogenicity rather than to the odor problem.  相似文献   
604.
A number of high-profile mislabeling incidents have led to many studies exploring the decision-making processes that firms make around performing illegal acts. However, it remains unclear why the proportion of firms conducting these acts constantly fluctuates and never disappears. Therefore, this study investigated this by carrying out a longitudinal analysis of food labeling in the Taiwanese rice industry. Drawing on the institutional isomorphism theory, it was found that the degree of mislabeling is negatively correlated with both the level of control of inspection regulations and public attention toward food regulations, and positively correlated with the previous proportion of firms mislabeling their products. Thus, there is a feedback loop between regulatory control, public attention, and the amount of mislabeling, with the amount of mislabeling not only being affected by the former degree of regulatory control, public attention, and mislabeling, but also modifying the future status of each of these. These findings further our understanding of the causal effects of illegal actions in the institutional agricultural environment.  相似文献   
605.
606.
Nonionic surfactant-modified clay is a useful absorbent material that effectively removes hydrophobic organic compounds from soil/groundwater. We developed a novel material by applying an immobilized fungal laccase onto nonionic surfactant-modified clay. Low-water-solubility polycyclic aromatic hydrocarbons (PAHs) (naphthalene/phenanthrene) were degraded in the presence of this bioactive material. PAH degradation by free laccase was higher than degradation by immobilized laccase when the surfactant concentration was allowed to form micelles. PAH degradation by immobilized laccase on TX-100-modified clay was higher than on Brij35-modified clay. Strong laccase degradation of PAH can be maintained by adding surfactant monomers or micelles. The physical adsorption of nonionic surfactants onto clay plays an important role in PAH degradation by laccase, which can be explained by the structure and molecular interactions of the surfactant with the clay and enzyme. A system where laccase is immobilized onto TX-100-monomer-modified clay is a good candidate bioactive material for in situ PAHs bioremediation.  相似文献   
607.
Odor pollution is a big environmental problem caused by large-scale livestock production in China, and developing a practical way to reduce these odors is pressing. In this study, a combination of 0.2–1.0 U/mL lignin peroxidase (LiP) and one of three peroxides (H2O2, CaO2, 2Na3CO3·3H2O2) was examined for its efficiency in reducing the release of eight chemicals (propionic acid, isobutyric acid, isocaproic acid, isovaleric acid, phenol, p-cresol, indole, and skatole), NH3, H2S, and odor intensity from pig manure. The results showed an approximately 90% reduction in p-cresol, 40–60% reduction in odor intensity, 16.5–40% reduction in indolic compounds, and 25–40% reduction in volatile fatty acids. Being the electron acceptors of LiP, 2Na3CO3·3H2O2 and CaO2 performed better than H2O2 in reducing the concentration of eight chemicals, NH3, H2S, and odor intensity from pig manure. The effect of deodorization can last for up to 72 hr.

Implications: In China, one of the major environmental problems caused by confined feeding is odor pollution, which brings a major threat to the sustainability, profitability, and growth of the livestock industry. To couple the LiP with the electron acceptors, a low–cost, simple, and feasible method for odor removal was established in this study. Based on the study results, a practical treatment method was provided for odor pollution and supply the farm operators a more flexible time to dispose treated manure.  相似文献   

608.
Rebound effect derived from energy efficiency improvement has been widely invested. However, most of studies focus on the rebound effect of the energy composite level and neither distinguish nor compare different energy types. We compare the differences in energy saving and energy rebound between primary and secondary energy sources, and further decompose the rebound effect into production rebound part and final demand component. To do so, we add a module for rebound into a comparative state China-CGE model. We design and test two simulation scenarios using the model. In Scenario 1, all production sectors’ energy efficiency of using primary energy increases by 5%. In Scenario 2, all production sectors’ energy efficiency of using secondary energy increases by 5%. The results show that Scenario 2 leads to more GDP growth and more energy saving. Our scenarios show rebound effects range between 9.6% and 27.9%, and in general are higher when energy efficiency of using primary energy sources is improved. Our decomposition analysis shows that improving energy efficiency in production sectors would stimulates energy use of final demand. Indeed, the consumption side has significant contribution to rebound in secondary energy use, especially in crude oil and gas. This study reveals that improving efficiency of using secondary energy is better than improving that of primary energy, both in terms of economic impact and energy rebound. And complementary policies that prevent energy services prices from falling too much can be adopted to reduce rebound. Controlling residential energy use could also be effective in reducing rebound, this has particular implication to economies in which residential energy consumption are far from saturation.  相似文献   
609.
Energy service is an effective way to promote energy conservation by market mechanisms, including energy saving services, energy procurement, supply of many varieties of energy, supply of renewable energy technologies, energy-related consulting services, risk management, etc. China is a major energy consumer but energy is in short supply, and the efficiency of energy use is low. China’s energy service industry has expanded rapidly, in terms of both the number of new Energy Service Companies entering the market and amount of capital invested in Energy Performance Contracting projects, but the energy service sector in China is still at an early stage of development. Developed countries began early in developing the energy service sector and their energy service market is mature, and the experience of developed countries shows that energy services play a significant role in advancing energy saving and emission reduction. Under the new situation, China needs combine energy services experience of developed countries, and take following measures to accelerate China’s energy services rapid and healthy development, including the long-term aspects of policy planning, energy-saving core technology, finance and capital investment, public sector reductions, personnel training, and so on.  相似文献   
610.
Nonferrous metal is an important basis material for the development of the national economy, and its consumption directly affects economic development. It has great significance in the effective utilization of nonferrous metals, development of an environment-friendly society, and investigation of the decoupling of nonferrous metal consumption and GDP growth. The decoupling indicators for nonferrous metal consumption and GDP growth (D r) in China from 1995 to 2010 were calculated in this study, and the results were analyzed. A productive model based on BP neural network was established. Then, the decoupling indicators for nonferrous metal consumption and GDP growth in China for the period of 2011–2020 were predicted. For the period of 1995–2010, the annual average decoupling indicators were <1 for copper, aluminum, zinc, lead, and nickel, except for tin, which was 0.21. The analysis showed that the decoupling of nonferrous metal consumption and GDP growth is in a less optimistic situation to copper, aluminum, zinc, lead, and nickel in China from 1995 to 2010. The annual average decoupling indicator for tin was 0.21, which indicates relative decoupling. For the period of 2011–2020, the predicted decoupling indicators for copper, aluminum, zinc, lead, nickel, and tin were between 0 and 1. This finding indicates the implementation of relative decoupling. However, the total consumption of nonferrous metals did not decouple from GDP growth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号