首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21309篇
  免费   412篇
  国内免费   1336篇
安全科学   754篇
废物处理   951篇
环保管理   2743篇
综合类   4397篇
基础理论   5370篇
环境理论   6篇
污染及防治   6252篇
评价与监测   1315篇
社会与环境   1000篇
灾害及防治   269篇
  2023年   152篇
  2022年   310篇
  2021年   348篇
  2020年   250篇
  2019年   234篇
  2018年   398篇
  2017年   404篇
  2016年   575篇
  2015年   531篇
  2014年   796篇
  2013年   1870篇
  2012年   874篇
  2011年   1068篇
  2010年   810篇
  2009年   920篇
  2008年   1057篇
  2007年   1026篇
  2006年   942篇
  2005年   779篇
  2004年   744篇
  2003年   721篇
  2002年   691篇
  2001年   832篇
  2000年   654篇
  1999年   394篇
  1998年   320篇
  1997年   296篇
  1996年   339篇
  1995年   322篇
  1994年   295篇
  1993年   260篇
  1992年   248篇
  1991年   197篇
  1990年   214篇
  1989年   195篇
  1988年   188篇
  1987年   174篇
  1986年   149篇
  1985年   147篇
  1984年   179篇
  1983年   174篇
  1982年   167篇
  1981年   169篇
  1980年   136篇
  1979年   159篇
  1978年   108篇
  1977年   100篇
  1975年   94篇
  1973年   92篇
  1972年   99篇
排序方式: 共有10000条查询结果,搜索用时 234 毫秒
861.
Different livestock feeds manipulations have been reported to reduce the total P concentration in manure. Information on the influence of these dietary manipulation strategies on the forms of P in manure is, however, limited. This study was, therefore, conducted to investigate the effect of diet manipulation through feed micronization and enzyme supplementation on the forms of P in swine manure. Eight growing pigs were fed four diets: barley-raw pea (BRP), barley-micronized pea (BMP), barley-raw pea with enzyme (BRPE), and barley-micronized pea with enzyme (BMPE) in a 4 x 4 Latin square design. Because we are interested in the effect of enzyme cocktail and pea micronization on manure P, we did not reduce the non-phytate P with enzyme addition in this study. The fecal material and urine were collected and analyzed for total P. Fecal material was fractionated to determine the total P in H2O-, NaHCO3-, NaOH-, and HCl-extractable fractions. The total P in the residual fractions was also determined. About 98% of the total P excreted by the pigs was found in the fecal material. Inclusion of micronized pea in pig diet did not have any significant effect (p > 0.1) on either the total P or the different P fractions in the manure. The labile P (the sum of H2O-P and NaHCO3-P) was significantly reduced (p < 0.05) by the addition of enzyme to swine diets. Pigs fed the BRPE and BMPE had 14 and 18% lower labile P, respectively, compared with pigs fed the BRP. Enzyme addition to pig diets reduced not only the total P in manure, but also the labile P fraction, which is of great environmental concern. Thus, the potential of P loss to runoff and the subsequent eutrophication can be reduced by enzyme addition to pig diets.  相似文献   
862.
Land application of wastewater has become an important disposal option for food-processing plants operating year-round. However, there are concerns about nutrient leaching from winter wastewater application on frozen soils. In this study, P and N leaching were compared between nongrowing season application of tertiary-treated wastewater plus growing season application of partially treated wastewater (NGS) vs. growing season application of partially treated wastewater (GS) containing high levels of soil P. As required by the Minnesota Pollution Control Agency (MPCA), the wastewater applied to the NGS fields during October through March was treated such that it contained < or =6 mg L(-1) total phosphorus (TP), < or =10 mg L(-1) NO3-N, and < or =20 mg L(-1) total Kjeldahl nitrogen (TKN). The only regulation for wastewater application during the growing season (April through September) was that cumulatively it did not exceed the agronomic N requirements of the crop in any sprayfield. Application of tertiary-treated wastewater during the nongrowing season plus partially treated wastewater during the growing season did not significantly increase NO3-N leaching compared with growing season application of nonregulated wastewater. However, median TP concentration in leachate was significantly higher from the NGS (3.56 mg L(-1)) than from the GS sprayfields (0.52 mg L(-1)) or nonirrigated sites (0.52 mg L(-1)). Median TP leaching loss was also significantly higher from the NGS sprayfields (57 kg ha(-1)) than from the GS (7.4 kg ha(-1)) or control sites (6.9 kg ha(-1)). This was mainly due to higher hydraulic loading from winter wastewater application and limited or no crop P uptake during winter. Results from this study indicate that winter application of even low P potato-processing wastewater to high P soils can accelerate P leaching. We conclude that the regulation of winter wastewater application on frozen soils should be based on wastewater P concentration and permissible loading. We also recommend that winter irrigation should take soil P saturation into consideration.  相似文献   
863.
Forage-based livestock systems have been implicated as major contributors to deteriorating water quality, particularly for phosphorus (P) from commercial fertilizers and manures affecting surface and ground water quality. Little information exists regarding possible magnitudes of nutrient losses from pastures that are managed for both grazing and hay production and how these might impact adjacent bodies of water. We examined the changes that have occurred in soil fertility levels of rhizoma peanut (Arachis glabrata Benth.)-based beef cattle pastures (n = 4) in Florida from 1988 to 2002. These pastures were managed for grazing in spring followed by haying in late summer and were fertilized annually with P (39 kg P2O5 ha(-1)) and K (68 kg K2O ha(-1)). Additionally, we investigated trends in water quality parameters and trophic state index (TSI) of lakes (n = 3) associated with beef cattle operations from 1993 to 2002. Overall, there was no spatial or temporal buildup of soil P and other crop nutrients despite the annual application of fertilizers and daily in-field loading of animal waste. In fact, soil fertility levels showed a declining trend for crop nutrient levels, especially soil P (y = 146.57 - 8.14 x year; r2= 0.75), even though the fields had a history of P fertilization and the cattle were rotated into the legume fields. Our results indicate that when nutrients are not applied in excess, cow-calf systems are slight exporters of P, K, Ca, and Mg through removal of cut hay. Water quality in lakes associated with cattle production was "good" (30-46 TSI) based on the Florida Water Quality Standard. These findings indicate that properly managed livestock operations may not be major contributors to excess loads of nutrients (especially P) in surface water.  相似文献   
864.
Phosphorus-immobilizing amendments can be useful in minimizing P leaching from high P soils that may be irrigated with wastewater. This study tested the P-binding ability of various amendment materials in a laboratory incubation experiment and then tested the best amendment in a field setup using drainage lysimeters. The laboratory experiment involved incubating 100-g samples of soil (72 mg kg(-1) water-extractable phosphorus, WEP) with various amendments at different rates for 63 d at field moisture capacity and 25 degrees C. The amendments tested were alum [Al2SO4)3.14H2O], ferric chloride (FeCl3), calcium carbonate (CaCO3), water treatment residual (WTR), and sugarbeet lime (SBL). Ferric chloride and alum at rates of 1.5 and 3.9 g kg(-1), respectively, were the most effective amendments that decreased WEP to 20 mg kg(-1), below which leaching has previously been shown to be low. Alum (1.3 kg m(-2)), which is less sensitive to redox conditions, was subsequently tested under field conditions, where it reduced WEP concentration in the 0- to 0.15-m layer from 119 mg kg(-1) on Day 0 to 36.1 mg kg(-1) (85% decrease) on Day 41. Lysimeter breakthrough tests using tertiary-treated potato-processing wastewater (mean total phosphorus [TP] = 3.4 mg L(-1)) showed that alum application reduced leachate TP and soluble reactive phosphorus (SRP) concentrations by 27 and 25%, respectively. These results indicate that alum application may be an effective strategy to immobilize P in high P coarse-textured soils. The relatively smaller decreases in TP and SRP in the leachate compared to WEP suggest some of the P may be coming from depths below 0.2 m. Thus, to achieve higher P sequestration, deeper incorporation of the alum may be necessary.  相似文献   
865.
The objective of this study was to quantify C and N mineralization rates from a range of organic amendments that differed in their total C and N contents and C quality, to gain a better understanding of their influence on the soil N cycle. A pelletized poultry manure (PP), two green waste-based composts (GWCa, GWCb), a straw-based compost (SBC), and a vermi-cast (VER) were incubated in a coarse-textured soil at 15 degrees C for 142 d. The C quality of each amendment was determined by chemical analysis and by 13C nuclear magnetic resonance (NMR). Carbon dioxide (CO2-C) evolution was determined using alkali traps. Gross N mineralization rates were calculated by 15N isotopic pool dilution. The CO2-C evolution rates and gross N mineralization rates were generally higher in amended soils than in the control soil. With the exception of GWCb all amendments released inorganic N at concentrations that would be high enough to warrant a reduction in inorganic N fertilizer application rates. The amount of N released from PP was high indicating that application rates should be reduced, or alternative amendments used, to minimize leaching losses in regions where ground water quality is of concern. There was a highly significant relationship between CO2-C evolution and gross N mineralization (R2= 0.95). Some of the chemically determined C quality parameters had significant relationships (p < 0.05) with both the cumulative amounts of C and N evolved. However, we found no significant relationships between 13C NMR spectral groupings, or their ratios, and either the CO2-C evolved or gross N mineralized from the amendments.  相似文献   
866.
Soluble salts, nutrients, and pathogenic bacteria in feedlot-pen runoff have the potential to cause pollution of the environment. A 2-yr study (1998-1999) was conducted at a beef cattle (Bos taurus) feedlot in southern Alberta, Canada, to determine the effect of bedding material [barley (Hordeum vulgare L.) straw versus wood chips] and within-pen location on the chemical and bacterial properties of pen-floor runoff. Runoff was generated with a portable rainfall simulator and analyzed for chemical content (nitrogen [N], phosphorus [P], soluble salts, electrical conductivity [EC], sodium adsorption ratio [SAR], dissolved oxygen [DO], and pH) and populations of three groups of bacteria (Escherichia coli, total coliforms, total aerobic heterotrophs at 27 degrees C) in 1998 and 1999. Bedding had a significant (P < or = 0.05) effect on NH4-N concentration and load in 1999, SO4 load in 1998, SO4 concentration and load in 1999, and total coliforms in both years; where these three variables were higher in wood than straw pens. Location had a significant effect on EC and concentrations of total Kjeldahl nitrogen (TKN), Na, K, SO4, and Cl in 1998, and total coliforms in both years. These seven variables were higher at the bedding pack than pen floor location, indicating that bedding packs were major reservoirs of TKN, soluble salts, and total coliforms. Significantly higher dissolved reactive phosphorus (DRP), total P, and NH4-N concentrations and loads at the bedding pack location in wood pens in 1998, and a similar trend for TKN concentration in 1999, indicated that this bedding-location treatment was a greater source of nutrients to runoff than the other three bedding-location treatments. Bedding, location, and their interaction may therefore be a potential tool to manage nutrients, soluble salts, and bacteria in feedlot runoff.  相似文献   
867.
Carbon sequestration in soils might mitigate the increase of carbon dioxide (CO2) in the atmosphere. Two contrasting subtropical perennial forage species, bahiagrass (BG; Paspalum notatum Flügge; C4), and rhizoma perennial peanut (PP; Arachis glabrata Benth.; C3 legume), were grown at Gainesville, Florida, in field soil plots in four temperature zones of four temperature-gradient greenhouses, two each at CO2 concentrations of 360 and 700 micromol mol(-1). The site had been cultivated with annual crops for more than 20 yr. Herbage was harvested three to four times each year. Soil samples from the top 20 cm were collected in February 1995, before plant establishment, and in December 2000 at the end of the project. Overall mean soil organic carbon (SOC) gains across 6 yr were 1.396 and 0.746 g kg(-1) in BG and PP, respectively, indicating that BG plots accumulated more SOC than PP. Mean SOC gains in BG plots at 700 and 360 micromol mol(-1) CO2 were 1.450 and 1.343 g kg(-1), respectively (not statistically different). Mean SOC gains in PP plots at 700 and 360 micromol mol(-1) CO2 were 0.949 and 0.544 g kg(-1), respectively, an increase caused by elevated CO2. Relative SON accumulations were similar to SOC increases. Overall mean annual SOC accumulation, pooled for forages and CO2 treatments, was 540 kg ha(-1) yr(-1). Eliminating elevated CO2 effects, overall mean SOC accumulation was 475 kg ha(-1) yr(-1). Conversion from cropland to forages was a greater factor in SOC accumulation than the CO2 fertilization effect.  相似文献   
868.
Fresh beef cattle (Bos taurus) manure has traditionally been applied to cropland in southern Alberta, but there has been an increase in application of composted manure to cropland in this region. However, the quality of runoff under fresh manure (FM) versus composted manure (CM) has not been investigated. Our objective was to compare runoff quality under increasing rates (0, 13, 42, 83 Mg ha(-1) dry wt.) of FM and CM applied for two consecutive years to a clay loam soil cropped to irrigated barley (Hordeum vulgare L.). We determined total phosphorus (TP), particulate phosphorus (PP), dissolved reactive phosphorus (DRP), total nitrogen (TN), NH4-N, and NO3-N concentrations and loads in runoff after one (1999) and two (2000) applications of FM and CM. We found significantly (P < or = 0.05) higher TP, DRP, and NH4-N concentrations, and higher DRP and TN loads under FM than CM after 2 yr of manure application. The TP loads were also higher under FM than CM at the 83 Mg ha(-1) rate in 2000, and DRP loads were higher for FM than CM at this high rate when averaged over both years. Application rate had a significant effect on TP and DRP concentrations in runoff. In addition, the slope values of the regressions between TP and DRP in runoff versus application rate were considerably higher for FM in 2000 than for FM in 1999, and CM in both 1999 and 2000. Significant positive relationships were found for TP and DRP in runoff versus soil Kelowna-extractable P and soil water-extractable P for FM and CM in 2000, indicating that interaction of runoff with the soil controlled the release of P. Total P and DRP were the variables most affected by the treatments. Overall, our study found that application of CM rather than FM to cropland may lower certain forms of P and N in surface runoff, but this is dependent on the interaction with year, application rate, or both.  相似文献   
869.
Contamination by bacteria is a leading cause of impairment in U.S. waters, particularly in areas of livestock agriculture. We evaluated the effectiveness of several practices in reducing Escherichia coli levels in runoff from fields receiving liquid dairy (Bos taurus) manure. Runoff trials were conducted on replicated hay and silage corn (Zea mays L.) plots using simulated rainfall. Levels of E. coli in runoff were approximately 10(4) to 10(6) organisms per 100 mL, representing a significant pollution potential. Practices tested were: manure storage, delay between manure application and rainfall, manure incorporation by tillage, and increased hayland vegetation height. Storage of manure for 30 d or more consistently and dramatically lowered E. coli counts in our experiments, with longer storage providing greater reductions. Manure E. coli declined by > 99% after approximately 90 d of storage. On average, levels of E. coli in runoff were 97% lower from plots receiving 30-d-old and > 99% lower from plots receiving 90-d-old manure than from plots where fresh manure was applied. Runoff from hayland and cornland plots where manure was applied 3 d before rainfall contained approximately 50% fewer E. coli than did runoff from plots that received manure 1 d before rainfall. Hayland vegetation height alone did not significantly affect E. coli levels in runoff, but interactions with rainfall delay and manure age were observed. Manure incorporation alone did not significantly affect E. coli levels in cornland plot runoff, but incorporation could reduce bacteria export by reducing field runoff and interaction with rainfall delay was observed. Extended storage that avoids additions of fresh manure, combined with application several days before runoff, incorporation on tilled land, and higher vegetation on hayland at application could substantially reduce microorganism loading from agricultural land.  相似文献   
870.
One method for recovering degraded soils in semiarid regions is to add organic matter to improve soil characteristics, thereby enhancing biogeochemical nutrient cycling. In this paper, we studied the changes in soil biological properties as a result of adding a crushed cotton gin compost (CCGC) and a poultry manure (PM) for 4 yr to restore a Xerollic Calciorthid located near Seville (Guadalquivir Valley, Andalusia, Spain). Organic wastes were applied at rates of 5, 7.5, and 10 Mg organic matter ha(-1). One year after the assay began, spontaneous vegetation had appeared in the treated plots, particularly in that receiving a high PM and CCGC dose. After 4 yr, the plant cover in these treated plots was around 88 and 79%, respectively, compared with 5% for the control. The effects on soil microbial biomass and six soil enzymatic activities (dehydrogenase, urease, BBA-protease, beta-glucosidase, arylsulfatase, and alkaline phosphatase activities) were ascertained. Both added organic wastes had a positive effect on the biological properties of the soil, although at the end of the experimental period and at high dosage, soil microbial biomass and soil enzyme activities were generally higher in the PM-amended soils compared to the CCGC-amended soils. Enzyme activity from the PM-amended soil was 5, 15, 13, 19, 22, 30, and 6% greater than CCGC-amended soil for soil microbial biomass, urease, BBA-protease, beta-glucosidase, alkaline phosphatase, arylsulfatase, and dehydrogenase activities, respectively. After 4 yr, the percentage of plant cover was > 48% in all treated plots and 5% in the control.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号