首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42665篇
  免费   568篇
  国内免费   804篇
安全科学   1463篇
废物处理   1918篇
环保管理   5718篇
综合类   7228篇
基础理论   11119篇
环境理论   25篇
污染及防治   11106篇
评价与监测   2711篇
社会与环境   2463篇
灾害及防治   286篇
  2023年   212篇
  2022年   439篇
  2021年   443篇
  2020年   388篇
  2019年   390篇
  2018年   681篇
  2017年   682篇
  2016年   1027篇
  2015年   803篇
  2014年   1174篇
  2013年   3429篇
  2012年   1503篇
  2011年   2054篇
  2010年   1649篇
  2009年   1725篇
  2008年   2015篇
  2007年   2052篇
  2006年   1761篇
  2005年   1484篇
  2004年   1403篇
  2003年   1454篇
  2002年   1312篇
  2001年   1629篇
  2000年   1201篇
  1999年   744篇
  1998年   501篇
  1997年   525篇
  1996年   521篇
  1995年   601篇
  1994年   581篇
  1993年   506篇
  1992年   495篇
  1991年   489篇
  1990年   512篇
  1989年   464篇
  1988年   403篇
  1987年   381篇
  1986年   347篇
  1985年   356篇
  1984年   417篇
  1983年   372篇
  1982年   374篇
  1981年   339篇
  1980年   276篇
  1979年   306篇
  1978年   246篇
  1977年   203篇
  1975年   207篇
  1974年   196篇
  1972年   211篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
571.
A field study at Coeur dAlene Lake, Idaho, USA, was conducted between October 1998 and August 2001 to examine the potential importance of sediment–water interactions on contaminant transport and to provide the first direct measurements of the benthic flux of dissolved solutes of environmental concern in this lake. Because of potential ecological effects, dissolved zinc and orthophosphate were the solutes of primary interest. Results from deployments of an in situ flux chamber indicated that benthic fluxes of dissolved Zn and orthophosphate were comparable in magnitude to riverine inputs. Tracer analyses and benthic-community metrics provided evidence that solute benthic flux were diffusion-controlled at the flux-chamber deployment sites. That is, effects of biomixing (or bioturbation) and ground-water interactions did not strongly influence benthic flux. Remediation efforts in the river might not produce desired water-quality effects in the lake because imposed shifts in concentration gradients near the sediment–water interface would generate a benthic feedback response. Therefore, development of water-quality models to justify remediation strategies requires consideration of contaminant flux between the water column and underlying sediment in basins that have been affected by long-term (decadal) anthropogenic activities.  相似文献   
572.
Phosphorus (P) loading from nonpoint sources, such as agricultural landscapes, contributes to downstream aquatic ecosystem degradation. Specifically, within the Mississippi watershed, enriched runoff contributions have far-reaching consequences for coastal water eutrophication and Gulf of Mexico hypoxia. Through storm events, the P mitigation capacity of agricultural drainage ditches under no-till cotton was determined for natural and variable rainfall conditions in north Mississippi. Over 2 yr, two experimental ditches were sampled monthly for total inorganic P concentrations in baseflow and on an event-driven basis for stormflows. Phosphorus concentrations, Manning's equations with a range of roughness coefficients for changes in vegetative densities within the ditches, and discharge volumes from Natural Resources Conservation Service dimensionless hydrographs combined to determine ranges in maximum and outflow storm P loads from the farms. Baseflow regressions and percentage reductions with P concentrations illustrated that the ditches alternated between being a sink and source for dissolved inorganic P and particulate P concentrations throughout the year. Storm event loads resulted in 5.5% of the annual applied fertilizer to be transported into the drainage ditches. The ditches annually reduced 43.92 +/- 3.12% of the maximum inorganic effluent P load before receiving waters. Agricultural drainage ditches exhibited a fair potential for P mitigation and thus warrant future work on controlled drainage to improve mitigation capacity.  相似文献   
573.
Studies that evaluate determinants of residential water demand typically use data from a single spatial scale. Although household‐scale data are preferred, especially when econometric models are used, researchers may be limited to aggregate data. There is little, if any, empirical analysis to assess whether spatial scale may lead to ecological fallacy problems in residential water use research. Using linear mixed‐effects models, we compare the results for the relationship of single‐family water use with its determinants using data from the household and census tract scales in the city of Phoenix. Model results between the household and census tract scale are similar suggesting the ecological fallacy may not be significant. Common significant determinants on these two spatial scales include household size, household income, house age, pool size, irrigable lot size, precipitation, and temperature. We also use city/town scale data from the Phoenix metropolitan area to parameterize the linear mixed‐effects model. The difference in the parameter estimates of those common variables compared to the first two scales indicates there is spatial heterogeneity in the relationship between single‐family water use and its determinants among cities and towns. The negative relationship between single‐family house density and residential water use suggests that residential water consumption could be reduced through coordination of land use planning and water demand management.  相似文献   
574.
High variability in precipitation and streamflow in the semiarid northern Great Plains causes large uncertainty in water availability. This uncertainty is compounded by potential effects of future climate change. We examined historical variability in annual and growing season precipitation, temperature, and streamflow within the Little Missouri River Basin and identified differences in the runoff response to precipitation for the period 1976‐2012 compared to 1939‐1975 (n = 37 years in both cases). Computed mean values for the second half of the record showed little change (<5%) in annual or growing season precipitation, but average annual runoff at the basin outlet decreased by 22%, with 66% of the reduction in flow occurring during the growing season. Our results show a statistically significant (< 0.10) 27% decrease in the annual runoff response to precipitation (runoff ratio). Surface‐water withdrawals for various uses appear to account for <12% of the reduction in average annual flow volume, and we found no published or reported evidence of substantial flow reduction caused by groundwater pumping in this basin. Results of our analysis suggest that increases in monthly average maximum and minimum temperatures, including >1°C increases in January through March, are the dominant driver of the observed decrease in runoff response to precipitation in the Little Missouri River Basin.  相似文献   
575.
576.
This study presents the experimental results obtained during long-term operation of two biofilters treating two alcohols: methanol and ethanol. The biofilters used for this purpose were previously packed with a compost material made from tobacco processing residues. The alcohols concentrations tested lay between 0.40 and 3.20 g/m3 for methanol, and 0.55 and 5.05 g/m3 for ethanol. The empty bed residence time in each biofilter was 60 s. Biofilter inlet loads of less than 190 and 300 g/m3/h for the methanol and ethanol additions respectively, were thereafter evaluated. In addition, the concentrations of nutrient nitrogen were also varied, from 0.1 to 2.0 g-N/l and from 0.3 to 11.3 g-N/l for the ethanol and the methanol, respectively. The results thus obtained have made it possible to select the optimal nitrogen concentrations which, for the cases examined, turn out to be 0.3 g-N/l and between 2 and 3.8 g-N/l for the ethanol and methanol substrates, respectively. The maximum elimination capacities obtained in this study were 82 and 150 g/m3/h, respectively for the methanol and ethanol cases. It was therefore concluded that, for a readily biodegradable compound such as ethanol, the nitrogen requirement is substantially lower than that needed for the methanol degradation, the latter appearing to be more difficult to degrade biologically under similar operating conditions. The production rate of the co-product carbon dioxide during methanol and ethanol biofiltration was also investigated. Also, a good correlation was found to exist between the temperature and the conversion achieved in the biofilter.  相似文献   
577.
This work reviews strategies for the management of municipal solid waste incineration (MSWI) residues, particularly solid particles collected from flue gases. These tiny particles may be retained by different equipment, with or without additives (lime, activated carbon, etc.), and depending on the different possible combinations, their properties may vary. In industrial plants, the most commonly used equipment for heat recovery and the cleaning of gas emissions are: heat recovery devices (boiler, superheater and economiser); dry, semidry or wet scrubbers; electrostatic precipitators; bag filters; fabric filters, and cyclones. In accordance with the stringent regulations in force in developed countries, these residues are considered hazardous, and therefore must be treated before being disposed of in landfills. Nowadays, research is being conducted into specific applications for these residues in order to prevent landfill practices. There are basically two possible ways of handling these residues: landfill after adequate treatment or recycling as a secondary material. The different types of treatment may be grouped into three categories: separation processes, solidification/stabilization, and thermal methods. These residues generally have limited applications, mainly due to the fact that they tend to contain large quantities of soluble salts (NaCl, KCl, calcium compounds), significant amounts of toxic heavy metals (Pb, Zn, Cr, Cu, Ni, Cd) in forms that may easily leach out, and trace quantities of very toxic organic compounds (dioxin, furans). The most promising materials for recycling this residue are ceramics and glass-ceramic materials. The main purpose of the present paper is to review the published literature in this field. A range of studies have been summarized in a series of tables focusing upon management strategies used in various countries, waste composition, treatment processes and possible applications.  相似文献   
578.
Accurate methods quantifying whole landfill surface flux of methane are important for regulatory and research purposes. This paper presents the results from the analysis of chamber measurements utilizing geospatial techniques [kriging and inverse distance weighting (IDW)] to arrive at an estimation of the whole landfill surface flux from the spatially distributed chamber measurement points. The difficulties in utilizing these methods will be discussed. Methane flux was determined on approximately 20 m grid spacing and variogram analysis was performed in order to model spatial structure, which was used to estimate methane flux at unsampled locations through kriging. Our analysis indicates that while the semi-variogram model showed some spatial structure, IDW was a more accurate interpolation method for this particular site. This was seen in the comparison of the resulting contour maps. IDW, coupled with surface area algorithms to extract the total area of user defined contour intervals, provides a superior estimate of the methane flux as confirmed through the methane balance. It is critical that the results of the emissions estimates be viewed in light of the whole cell methane balance; otherwise, there is no rational check and balance system to validate the results.  相似文献   
579.
580.
In August 2000 high concentrations of the dominant herbivorous copepod Calanus hyperboreus were detected in the Arctic Fram Strait, west of Spitsbergen, 1 m above the seafloor at 2,290 m water depth. Individuals from that layer were sampled by a hyper-benthic net attached to the frame of an epi-benthic sledge. For comparison, the vertical distribution of C. hyperboreus in the water column was studied simultaneously by a multiple opening/closing net haul from 2,250 m depth to the surface. Maximum abundance was found close to the surface with 6.6 and 10.0 ind. m?3 at 0–50 m and 50–100 m depth, respectively. However, the major fraction of the population (>40%) occurred between 1,000 and 1,500 m depth. In the deepest layer (2,000–2,250 m) abundance measured 2.2 ind. m?3 and was twice as high as between 100 and 1,000 m depth. In comparison to individuals from surface waters, copepods from the hyper-benthic layer were torpid and did not react to mechanical stimuli. Stage CV copepodids and females from the deep sample contained 4–10% less lipid and showed significantly reduced respiration rates of 0.24 and 0.26 ml O2 h?1 g?1 dry mass (DM) as compared to surface samples (0.49 and 0.43 ml O2 h?1 g?1 DM). All these observations indicate that the hyper-benthic part of the population had already started a dormant overwintering phase at great depth. Based on the lipid deposits and energy demands, the potential maximum duration of the non-feeding dormant phase was estimated at 76–110 days for females and at 98–137 days for CV copepodids, depending on what indispensable minimum lipid content was assumed. In any case, the estimated times could not meet the necessary requirements for a starvation period of >6 months until the next phytoplankton bloom in the following spring. The ecological implications of these results are discussed with respect to the life cycle and eco-physiological adaptations of C. hyperboreus to its high-Arctic habitat.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号