首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   538篇
  免费   10篇
  国内免费   8篇
安全科学   16篇
废物处理   11篇
环保管理   93篇
综合类   67篇
基础理论   132篇
环境理论   12篇
污染及防治   146篇
评价与监测   39篇
社会与环境   40篇
  2023年   4篇
  2022年   10篇
  2021年   7篇
  2020年   8篇
  2019年   10篇
  2018年   24篇
  2017年   22篇
  2016年   22篇
  2015年   16篇
  2014年   21篇
  2013年   44篇
  2012年   29篇
  2011年   45篇
  2010年   24篇
  2009年   25篇
  2008年   35篇
  2007年   28篇
  2006年   35篇
  2005年   16篇
  2004年   13篇
  2003年   30篇
  2002年   18篇
  2001年   6篇
  2000年   5篇
  1999年   4篇
  1998年   8篇
  1997年   9篇
  1996年   4篇
  1995年   2篇
  1994年   5篇
  1993年   2篇
  1992年   7篇
  1991年   1篇
  1989年   2篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1981年   2篇
  1979年   2篇
  1978年   1篇
  1976年   1篇
排序方式: 共有556条查询结果,搜索用时 31 毫秒
41.
42.
The human intestinal absorption of acetamiprid (AAP) using the Caco-2 cell line reveals that AAP flux was active in a bidirectional mode with an apparent permeability coefficient of 26.10?6 cm·s?1 at 37°C. Apical uptake was concentration-dependent and unsaturated for AAP concentrations up to 200 μ M. AAP cell preloading demonstrated the involvement of active transport mechanisms. Arrhenius plot analysis revealed an unusual profile with two apparent activation energies suggesting two transport processes. Uptake Vi studies indicated the involvement of a sodium-dependent transporter, the presence of a common transporter of AAP and nicotine and the involvement of Ti-sensitive ATP-dependent efflux transporters. Apical efflux investigations showed the involvement of inward active transporter(s). Whereas vincristine had no effect on intracellular accumulation, taxol and daunorubicin treatments unexpectedly led to 10% and 23% reductions respectively, suggesting that the latter shared a common inward transporter with AAP. All these results suggest full and express AAP absorption in vivo with transport involving both inward and outward, passive and active mechanisms. Thus, AAP or its metabolites could be representative of a risk for human health after its ingestion in food.  相似文献   
43.
The European Union Water Framework Directive (WFD) requires Member States to set water quality objectives and identify cost-effective mitigation measures to achieve "good status" in all waters. However, costs and effectiveness of measures vary both within and between catchments, depending on factors such as land use and topography. The aim of this study was to develop a cost-effectiveness analysis framework for integrating estimates of phosphorus (P) losses from land-based sources, potential abatement using riparian buffers, and the economic implications of buffers. Estimates of field-by-field P exports and routing were based on crop risk and field slope classes. Buffer P trapping efficiencies were based on literature metadata analysis. Costs of placing buffers were based on foregone farm gross margins. An integrated optimization model of cost minimization was developed and solved for different P reduction targets to the Rescobie Loch catchment in eastern Scotland. A target mean annual P load reduction of 376 kg to the loch to achieve good status was identified. Assuming all the riparian fields initially have the 2-m buffer strip required by the General Binding Rules (part of the WFD in Scotland), the model gave good predictions of P loads (345-481 kg P). The modeling results show that riparian buffers alone cannot achieve the required P load reduction (up to 54% P can be removed). In the medium P input scenario, average costs vary from £38 to £176 kg P at 10% and 54% P reduction, respectively. The framework demonstrates a useful tool for exploring cost-effective targeting of environmental measures.  相似文献   
44.
Diffuse pollution remains a major threat to surface waters due to eutrophication caused by phosphorus (P) transfer from agricultural land. Vegetated buffer strips (VBSs) are increasingly used to mitigate diffuse P losses from agricultural land, having been shown to reduce particulate P transfer. However, retention of dissolved P (DP) has been lower, and in some cases VBSs have increased delivery to surface waters. The aims of this review were (i) to develop a conceptual model to enhance the understanding of VBS functioning in terms of DP, (ii) to identify key processes within the model that affect DP retention and delivery, and (iii) to explore evidence for the controls on these processes. A greater understanding in these areas will allow the development of management strategies that enhance DP retention. We found evidence of a surface layer in buffer strip soils that is enriched in soluble P compared with adjacent agricultural land and may be responsible for the reported increased DP delivery. Through increased biological activity in VBSs, plants and microorganisms may assimilate P from particulates retained in the VBSs or native soil P and remobilize this P in a more soluble form. These conclusions are based on a limited amount of research, and a better understanding of biogeochemical cycling of P in buffer strip soils is required.  相似文献   
45.
The gold nanoparticles (Au-NPs) are being increasingly used because of their huge diversity of applications, and consequently, elevated levels in the environment are expected. However, due to their physico-chemical properties and functionalization a high variety of Au-NPs can be found, and complete toxicological information for each type of Au-NPs still lacks, and even, the toxicological information for the same species is sometimes contradictory. Therefore, hazard assessment should be done case by case. Hence, the objective of this study was to obtain ecotoxicological information of the same Au-NPs in aquatic organisms and to find a rationale for Au-NPs toxicity. For such a purpose, bare and hyaluronic acid capped Au-NPs (12.5 nm) along with Au-NPs bulk material were tested on freshwater algae, Daphnia and zebrafish. Results showed that while gold nanoparticles were found to be harmless to the tested organisms, the soluble gold showed to be toxic to algae and Daphnia, with an LC50 between 1 and 2 mg L−1. Comparing our results with those gathered in the literature, it appears that a common hazard assessment of Au-NPs on the studied organisms can be elucidated.  相似文献   
46.
Nitrogen application can have a significant effect on soil carbon (C) pools, plant biomass production, and microbial biomass C processing. The focus of this study was to investigate the short-term effect of N fertilization on soil CO(2) emission and microbial biomass C. The study was conducted from 2001 to 2003 at four field sites in Iowa representing major soil associations and with a corn (Zea mays L.)-soybean (Glycine max L. Merr.) rotation. The experimental design was a randomized complete block with four replications of four N rates (0, 90, 180, and 225 kg ha(-1)). In the corn year, season-long cumulative soil CO(2) emission was greatest with the zero N application. There was no effect of N applied in the prior year on CO(2) emission in the soybean year, except at one of three sites, where greater applied N decreased CO(2) emission. Soil microbial biomass C (MBC) and net mineralization in soil collected during the corn year was not significantly increased with increase in N rate in two out of three sites. At all sites, soil CO(2) emission from aerobically incubated soil showed a more consistent declining trend with increase in N rate than found in the field. Nitrogen fertilization of corn reduced the soil CO(2) emission rate and seasonal cumulative loss in two out of three sites, and increased MBC at only one site with the highest N rate. Nitrogen application resulted in a reduction of both emission rate and season-long cumulative emission of CO(2)-C from soil.  相似文献   
47.
Meers E  Tack FM  Verloo MG 《Chemosphere》2008,70(3):358-363
Previous research has identified ethylenediaminedisuccinate (EDDS) as a promising biodegradable alternative for persistent compounds such as EDTA for application in soil washing or enhanced phytoextraction of heavy metals. This study examines heavy metal mobilization in three polluted soils varying in soil composition, with specific attention for competitive behaviour for complexation between the various metals and major elements, such as Al, Fe, Mn, Ca and Mg. In addition, amendment biodegradability was compared between the different soil types. The selected soils included a moderately contaminated calcareous clayey soil, a dredged sediment derived surface soil with similar soil characteristics yet more heavily polluted with Cd, Cr and Zn, and a sandy soil moderately contaminated by historical smelter activity (atmospheric deposition). Biodegradability of EDDS in the three soils varied distinctly. This was mainly expressed in the duration of the lag phase prior to metal complex degradation, and not so much in the half life when degradation effectively did set in. Differences in the lag phase were attributed to differences in soil pollution. However, EDDS was fully degraded within a period of 54 d in all soils regardless of initial delay. Assessment of the cation mobilisation patterns in the three soils under study revealed that mainly Ca, Fe and Al can reduce effectiveness of heavy metal mobilisation by competition for complexation.  相似文献   
48.
Photolysis of 14C-sulfadiazine in aqueous solution under simulated sunlight followed first-order kinetics. The impact of H2O2, humic acid, fulvic acid and acetone to enhance the photodegradation of sulfadiazine (SDZ) was studied. Six photoproducts, 4-OH-SDZ, 5-OH-SDZ, N-formyl-SDZ, 4-[2-iminopyrimidine-1(2H)-yl] aniline, 2-aminopyrimidine, and aniline were identified. Extrusion of SO2 was found to be the main degradation process during irradiation. These photoproducts can occur in water and soil upon sunlight exposure, when soil is treated with SDZ contained in manure. Due to photodegradation the experimental half-life of the SDZ in water was 32h and in the presence of photosensitizers the half-life values were 19.3-31.4h, 17.2-31.4h, 12.6-29.8h, and 3.8-30.7h for H2O2, humic acid, fulvic acid, and acetone, respectively depending on the concentration of the photosensitizers. The presence of photosensitizers markedly reduced SDZ persistence, indicating that indirect photolytic processes are important factors governing the photodegradation of SDZ in aqueous environments. Investigation revealed further persistence behavior of SDZ in manure. The half-life value of SDZ in manure was 158h.  相似文献   
49.
The detoxification mechanisms of the aquatic moss, Fontinalis antipyretica Hedw., exposed to Cr was analyzed. In addition, the influence of Cr salts (as Cr nitrate, chloride and potassium bichromate) on these mechanisms has also been studied. The activity of antioxidant enzymes superoxide dismutase (SOD, EC 1.15.1.1.), catalase (EC 1.11.1.6.), ascorbate peroxidase (APX, EC 1.11.1.11.), guaiacol peroxidase (GPX, EC 1.11.1.7.) and glutathione reductase (GR, EC 1.6.4.2.) increased in plants treated with Cr concentrations ranging from 6.25x10(-5) to 6.25mM when given as Cr(NO(3))(3). Antioxidant enzymes responded to the other two salts CrCl(3) and K(2)Cr(2)O(7) only with Cr concentrations higher than 6.25x10(-2)mM. Glutathione level and GSSG/GSH ratio also responded to Cr exposure but no dose-effect relationship could be observed. Moreover, two unknown thiol compounds were observed in mosses exposed to the highest Cr concentrations. Effects on chlorophyll contents and chlorophyll a/b ratios were also shown even at low Cr concentrations. Our results indicated that environmentally realistic concentrations of Cr could lead to impairment of the cellular activity towards F. antipyretica and that Cr(III), when present as a nitrate salt, was as harmful as Cr(VI).  相似文献   
50.
When a group of users who share a common-pool resource through a system of licenses is exposed to the risk of shortage, there is a need to establish a sharing rule. Such sharing rule is likely to impact the individual decisions to self-insure, i.e., to rely on a secure but costly resource instead of the free but uncertain common-pool resource. We determine the optimal sharing rule and the optimal diversification between the common-pool resource and the safe resource as a function of the agents’ individual characteristics, the distribution of the common-pool resource availability, and the cost of the safe resource. We find that, for a group of agents with heterogenous risk preferences, a perfectly informed regulator can obtain the optimal diversification level by imposing a rationing rule which shares the resource between agents proportionally to their relative risk tolerance. We illustrate and interpret our results in the context of water management in France.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号