首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22834篇
  免费   144篇
  国内免费   112篇
安全科学   401篇
废物处理   1120篇
环保管理   3120篇
综合类   4193篇
基础理论   6119篇
环境理论   6篇
污染及防治   5176篇
评价与监测   1618篇
社会与环境   1272篇
灾害及防治   65篇
  2018年   1581篇
  2017年   1494篇
  2016年   1392篇
  2015年   285篇
  2014年   247篇
  2013年   1058篇
  2012年   770篇
  2011年   1736篇
  2010年   988篇
  2009年   974篇
  2008年   1292篇
  2007年   1668篇
  2006年   444篇
  2005年   351篇
  2004年   386篇
  2003年   454篇
  2002年   422篇
  2001年   481篇
  2000年   334篇
  1999年   221篇
  1998年   162篇
  1997年   147篇
  1996年   179篇
  1995年   178篇
  1994年   201篇
  1993年   181篇
  1992年   183篇
  1991年   181篇
  1990年   208篇
  1989年   194篇
  1988年   166篇
  1987年   163篇
  1986年   148篇
  1985年   166篇
  1984年   158篇
  1983年   167篇
  1982年   161篇
  1981年   163篇
  1980年   149篇
  1979年   145篇
  1978年   142篇
  1977年   129篇
  1976年   136篇
  1975年   114篇
  1974年   142篇
  1973年   126篇
  1972年   125篇
  1971年   105篇
  1970年   106篇
  1967年   116篇
排序方式: 共有10000条查询结果,搜索用时 484 毫秒
961.
To reduce endosulfan (C9H6O3Cl6S; 6,7,8,9,10,10-hexachloro-1,5, 5a,6,9,9a-hexahydro-6,9-methano-2,4,3-benzodioxathiepin 3-oxide) contamination in rivers and waterways, it is important to know the relative significances of airborne transport pathways (including spray drift, vapor transport, and dust transport) and waterborne transport pathways (including overland and stream runoff). This work uses an integrated modeling approach to assess the absolute and relative contributions of these pathways to riverine endosulfan concentrations. The modeling framework involves two parts: a set of simple models for each transport pathway, and a model for the physical and chemical processes acting on endosulfan in river water. An averaging process is used to calculate the effects of transport pathways at the regional scale. The results show that spray drift, vapor transport, and runoff are all significant pathways. Dust transport is found to be insignificant. Spray drift and vapor transport both contribute low-level but nearly continuous inputs to the riverine endosulfan load during spraying season in a large cotton (Gossypium hirsutum L.)-growing area, whereas runoff provides occasional but higher inputs. These findings are supported by broad agreement between model predictions and observed typical riverine endosulfan concentrations in two rivers.  相似文献   
962.
Atrazine (6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine) and metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide] have been found with increasing occurrence in rivers and streams. Their continued use will require changes in agricultural practices. We compared water quality from four crop-tillage treatments: (i) conventional moldboard plow (MB), (ii) MB with ryegrass (Lolium multiflorum Lam.) intercrop (IC), (iii) soil saver (SS), and (iv) SS + IC; and two drainage control treatments, drained (D) and controlled drainage-subirrigation (CDS). Atrazine (1.1 kg a.i. ha-1), metribuzin [4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazine-5(4H)-one] (0.5 kg a.i. ha-1), and metolachlor (1.68 kg a.i. ha-1) were applied preemergence in a band over seeded corn (Zea mays L.) rows. Herbicide concentration and losses were monitored from 1992 to spring 1995. Annual herbicide losses ranged from < 0.3 to 2.7% of application. Crop-tillage treatment influenced herbicide loss in 1992 but not in 1993 or 1994, whereas CDS affected partitioning of losses in most years. In 1992, SS + IC reduced herbicide loss in tile drains and surface runoff by 46 to 49% compared with MB. The intercrop reduced surface runoff, which reduced herbicide transport. Controlled drainage-subirrigation increased herbicide loss in surface runoff but decreased loss through tile drainage so that total herbicide loss did not differ between drainage treatments. Desethyl atrazine [6-chloro-N-(1-methylethyl)-1,3,5-triazine-2,4-diamine] comprised 7 to 39% of the total triazine loss.  相似文献   
963.
Water resources protection from nitrate nitrogen (NO3-N) contamination is an important public concern and a major national environmental issue. The abilities of the SOIL-SOILN model to simulate water drainage and nitrate N fluxes from orchardgrass (Dactylis glomerata L.) were evaluated using data from a 3-yr field experiment. The soil is classified as a Hagerstown silt loam soil (fine, mixed, semiactive, mesic Typic Hapludalf). Nitrate losses below the 1-m depth from N-fertilized grazed orchardgrass were measured with intact soil core lysimeters. Five N-fertilizer treatments consisted of a control, urine application in the spring, urine application in the summer, urine application in the fall, and feces application in the summer. The SOIL-SOILN models were evaluated using water drainage and nitrate flux data for 1993-1994, 1994-1995, and 1995-1996. The N rate constants from a similar experiment with inorganic fertilizer and manure treatments under corn (Zea mays L.) were used to evaluate the SOILN model under orchardgrass sod. Results indicated that the SOIL model accurately simulated water drainage for all three years. The SOILN model adequately predicted nitrate losses for three urine treatments in each year and a control treatment in 1994-1995. However, it failed to produce accurate simulations for two control treatments in 1993-1994 and 1995-1996, and feces treatments in all three years. The inaccuracy in the simulation results for the control and feces treatments seems to be related to an inadequate modeling of N transformation processes. In general, the results demonstrate the potential of the SOILN model to predict NO3-N fluxes under pasture conditions using N transformation rate constants determined through the calibration process from corn fields on similar soils.  相似文献   
964.
The biological health of soil is an important aspect of soil quality because of the many critical functions performed by organisms in soil. Various indicators of soil quality have been proposed, but measurements of microbial biomass are most commonly used. During decomposition of plant residues in soil the relative intensities of the O-alkyl-C signal decreases and the alkyl-C signal increases in nuclear magnetic resonance (NMR) spectra. This leads to the suggestion that the alkyl-C to O-alkyl-C ratio of a soil may indicate the degree of decomposition. Consequently, the overall resource quality of soil C as a substrate for heterotrophic microorganisms may be inversely related to the alkyl-C to O-alkyl-C ratio. Our hypothesis is that a relationship exists between the size of the soil microbial community (microbial biomass) and the quality of soil carbon as a resource for microorganisms. New data have been combined with previously published data to show that there was a significant, negative correlation between the biomass C to total C (Cmic, to Corg) ratio and the alkyl-C to O-alkyl-C ratio (p < 0.01), which supports our hypothesis.  相似文献   
965.
Excessive nitrogen (N) loading to N-sensitive waters such as the Neuse River estuary (North Carolina) has been shown to promote changes in microbial and algal community composition and function (harmful algal blooms), hypoxia and anoxia, and fish kills. Previous studies have estimated that wet atmospheric deposition of nitrogen (WAD-N), as deposition of dissolved inorganic nitrogen (DIN: NO3-, NH3/NH4+) and dissolved organic nitrogen, may contribute at least 15% of the total externally supplied or "new" N flux to the coastal waters of North Carolina. In a 3-yr study from June 1996 to June 1999, we calculated the weekly wet deposition of inorganic and organic N at eleven sites on a northwest-southeast transect in the watershed. The annual mean total (wet DIN + wet organics) WAD-N flux for the Neuse River watershed was calculated to be 956 mg N/m2/yr (15026 Mg N/yr). Seasonally, the spring (March-May) and summer (June-August) months contain the highest total weekly N deposition; this pattern appears to be driven by N concentration in precipitation. There is also spatial variability in WAD-N deposition; in general, the upper portion of the watershed receives the lowest annual deposition and the middle portion of the watershed receives the highest deposition. Based on a range of watershed N retention and in-stream riverine processing values, we estimate that this flux contributes approximately 24% of the total "new" N flux to the estuary.  相似文献   
966.
Laboratory degradation studies were performed in Norwegian soils using two commercial formulations (Tilt and Triagran-P) containing either propiconazole alone or a combination of bentazone, dichlorprop, and MCPA. These soils included a fine sandy loam from Hole and a loam from Kroer, both of which are representative of Norwegian agricultural soils. The third soil was a highly decomposed organic material from the Froland forest. A fourth soil from the Skuterud watershed was used only for propiconazole degradation. After 84 d, less than 0.1% of the initial MCPA concentration remained in all three selected soils. For dichlorprop, the same results were found for the fine sandy loam and the organic-rich soil, but in the loam, 26% of the initial concentration remained. After 84 d, less than 0.1% of the initial concentration of bentazone remained in the organic-rich soil, but in the loam and the fine sandy loam 52 and 69% remained, respectively. Propiconazole was shown to be different from the other pesticides by its persistence. Amounts of initial concentration remaining varied from 40, 70, and 82% in the reference soils after 84 d for the organic-rich soil, fine sandy loam, and loam, respectively. The organic-rich soil showed the highest capacity to decompose all four pesticides. The results from the agricultural soils and the Skuterud watershed showed that the persistence of propiconazole was high. Pesticide degradation was approximated to first-order kinetics. Slow rates of degradation, where more than 50% of the pesticide remained in the soil after the 84-d duration of the experiment, did not fit well with first-order kinetics.  相似文献   
967.
Hypoxia in the Gulf of Mexico   总被引:1,自引:0,他引:1  
Seasonally severe and persistent hypoxia, or low dissolved oxygen concentration, occurs on the inner- to mid-Louisiana continental shelf to the west of the Mississippi River and Atchafalaya River deltas. The estimated areal extent of bottom dissolved oxygen concentration less than 2 mg L-1 during mid-summer surveys of 1993-2000 reached as high as 16,000 to 20,000 km2. The distribution for a similar mapping grid for 1985 to 1992 averaged 8000 to 9000 km2. Hypoxia occurs below the pycnocline from as early as late February through early October, but is most widespread, persistent, and severe in June, July, and August. Spatial and temporal variability in the distribution of hypoxia exists and is, at least partially, related to the amplitude and phasing of the Mississippi and Atchafalaya discharges and their nutrient flux. Mississippi River nutrient concentrations and loadings to the adjacent continental shelf have changed dramatically this century, with an acceleration of these changes since the 1950s to 1960s. An analysis of diatoms, foraminiferans, and carbon accumulation in the sedimentary record provides evidence of increased eutrophication and hypoxia in the Mississippi River delta bight coincident with changes in nitrogen loading.  相似文献   
968.
Historical streamflow and concentration data were used in regression models to estimate the annual flux of nitrogen (N) to the Gulf of Mexico and to determine where the nitrogen originates within the Mississippi Basin. Results show that for 1980-1996 the mean annual total N flux to the Gulf of Mexico was 1,568,000 t yr-1. The flux was about 61% nitrate N, 37% organic N, and 2% ammonium N. The flux of nitrate N to the Gulf has approximately tripled in the last 30 years with most of the increase occurring between 1970 and 1983. The mean annual N flux has changed little since the early 1980s, but large year-to-year variations in N flux occur because of variations in precipitation. During wet years the N flux can increase by 50% or more due to flushing of nitrate N that has accumulated in the soils and unsaturated zones in the basin. The principal source areas of N are basins in southern Minnesota, Iowa, Illinois, Indiana, and Ohio that drain agricultural land. Basins in this region yield 1500 to more than 3100 kg N km-2 yr-1 to streams, several times the N yield of basins outside this region.  相似文献   
969.
Information on the forms of P present in animal manure may improve our ability to manage manure P. In most investigations of manure P composition, only inorganic and total P are determined, and the difference between them is assigned as organic P. In this study, we explored the possibility of identifying and quantifying more specific organic P forms in animal manure with orthophosphate-releasing enzymes. Pig (Sus scrofa) manure and cattle (Bos taurus) manure were first sequentially fractionated into water-soluble P, NaHCO3-soluble P, NaOH-soluble P, HCl-soluble P, and residual P. The fractions were separately incubated with wheat phytase, alkaline phosphatase, nuclease P1, nucleotide pyrophosphatase, or their combinations. The released orthophosphate was determined by a molybdate blue method. Part of the organic P in those fractions could be identified by the enzymatic treatments as phytate (i.e., 39% for pig manure and 17% for cattle manure in water-soluble organic P), simple phosphomonoesters (i.e., 43% for pig manure and 15% for cattle manure in NaOH-soluble organic P), nucleotide-like phosphodiesters (2-12%), and nucleotide pyrophosphate (0-4%). Our data indicate that the enzymatic treatment is an effective approach to identify and quantify the organic P forms present in animal manures.  相似文献   
970.
Pesticides and nutrients can be transported from treated agricultural land in irrigation runoff and thus can affect the quality of receiving waters. A 3-yr study was carried out to assess possible detrimental effects on the downstream water quality of the South Saskatchewan River due to herbicide and plant nutrient inputs via drainage water from an irrigation district. Automated water samplers and flow monitors were used to intensively sample the drainage water and to monitor daily flows in two major drainage ditches, which drained approximately 40% of the flood-irrigated land within the irrigation district. Over three years, there were no detectable inputs of ethalfluralin into the river and those of trifluralin were less than 0.002% of the amount applied to flood-irrigated fields. Inputs of MCPA, bromoxynil, dicamba and mecoprop were 0.06% or less of the amounts applied, whereas that for clopyralid was 0.31%. The relatively higher input (1.4%) of 2,4-D to the river was probably due its presence in the irrigation water. Corresponding inputs of P (as total P) and N (as nitrate plus ammonia) were 2.2 and 1.9% of applied fertilizer, respectively. Due to dilution of the drainage water in the river, maximum daily herbicide (with the exception of 2,4-D) and nutrient loadings to the river would not have resulted in significant concentration increases in the river water. There was no consistent remedial effect on herbicides entering the river due to passage of the drainage water through a natural wetland. In contrast, a considerable portion of the nutrients entering the river originated from the wetland.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号