首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   271篇
  免费   1篇
  国内免费   3篇
安全科学   6篇
废物处理   24篇
环保管理   21篇
综合类   29篇
基础理论   44篇
污染及防治   100篇
评价与监测   34篇
社会与环境   16篇
灾害及防治   1篇
  2023年   7篇
  2022年   14篇
  2021年   22篇
  2020年   4篇
  2019年   10篇
  2018年   10篇
  2017年   12篇
  2016年   13篇
  2015年   9篇
  2014年   19篇
  2013年   24篇
  2012年   14篇
  2011年   26篇
  2010年   16篇
  2009年   13篇
  2008年   9篇
  2007年   14篇
  2006年   12篇
  2005年   9篇
  2004年   2篇
  2003年   4篇
  2002年   1篇
  2001年   1篇
  1999年   3篇
  1997年   1篇
  1995年   1篇
  1993年   1篇
  1991年   1篇
  1987年   1篇
  1979年   1篇
  1971年   1篇
排序方式: 共有275条查询结果,搜索用时 8 毫秒
271.
Journal of Material Cycles and Waste Management - Fruit production worldwide is over 675 million tons per year. Brazil is responsible for the production of 43.6 million tons of fruits per year,...  相似文献   
272.
Journal of Polymers and the Environment - Starch is the main predominant food reserve in plants. Its characteristics stand out from other carbohydrates providing it with several industrial...  相似文献   
273.
The aim of the present study is to estimate the export fluxes of major dissolved species at the scale of the Amazon basin, to identify the main parameters controlling their spatial distribution and to identify the role of discharge variability in the variability of the total dissolved solid (TDS) flux through the hydrological cycle. Data are compiled from the monthly hydrochemistry and daily discharge database of the “Programa Climatologico y Hidrologico de la Cuenca Amazonica de Bolivia” (PHICAB) and the HYBAM observatories from 34 stations distributed over the Amazon basin (for the 1983–1992 and 2000–2012 periods, respectively). This paper consists of a first global observation of the fluxes and temporal dynamics of each geomorphological domain of the Amazon basin. Based on mean interannual monthly flux calculations, we estimated that the Amazon basin delivered approximately 272?×?106 t year?1 (263–278) of TDS during the 2003–2012 period, which represents approximately 7 % of the continental inputs to the oceans. This flux is mainly made up by HCO3, Ca and SiO2, reflecting the preferential contributions of carbonate and silicate chemical weathering to the Amazon River Basin. The main tributaries contributing to the TDS flux are the Marañon and Ucayali Rivers (approximately 50 % of the TDS production over 14 % of the Amazon basin area) due to the weathering of carbonates and evaporites drained by their Andean tributaries. An Andes–sedimentary area–shield TDS flux (and specific flux) gradient is observed throughout the basin and is first explained by the TDS concentration contrast between these domains, rather than variability in runoff. This observation highlights that, under tropical context, the weathering flux repartition is primarily controlled by the geomorphological/geological setting and confirms that sedimentary areas are currently active in terms of the production of dissolved load. The log relationships of concentration vs discharge have been characterized over all the studied stations and for all elements. The analysis of the slope of the relationship within the selected contexts reveals that the variability in TDS flux is mainly controlled by the discharge variability throughout the hydrological year. At the outlet of the basin, a clockwise hysteresis is observed for TDS concentration and is mainly controlled by Ca and HCO3 hysteresis, highlighting the need for a sampling strategy with a monthly frequency to accurately determine the TDS fluxes of the basin. The evaporite dissolution flux tends to be constant, whereas dissolved load fluxes released from other sources (silicate weathering, carbonate weathering, biological and/or atmospheric inputs) are mainly driven by variability in discharge. These results suggest that past and further climate variability had or will have a direct impact on the variability of dissolved fluxes in the Amazon. Further studies need to be performed to better understand the processes controlling the dynamics of weathering fluxes and their applicability to present-day concentration–discharge relationships at longer timescales.  相似文献   
274.
The degradation and ecotoxicity of sulfonylurea herbicide rimsulfuron and its major metabolites were examined in batch samples of an alluvial sandy loam and in freshwater. An HPLC-DAD method was adapted to simultaneously identify and quantify rimsulfuron and its metabolites, which was successfully validated by GC-MS analysis. In aqueous solutions, pure rimsulfuron was rapidly hydrolyzed into metabolite 1 (N-(4,6-dimethoxypyrimidin-2-yl)-N-(3-(ethylsulfonyl)-2-pyridinylurea)), which itself was transformed into the more stable metabolite 2 (N-((3-(ethylsulfonyl)-2-pyridinyl)-4,6-dimethoxy-2-pyrimidineamine)), with half-life (t(1/2)) values of 2 and 2.5 days, respectively. Hydrolysis was instantaneous under alkaline conditions (pH = 10). In aqueous suspensions of the alluvial soil (pH = 8), formulated rimsulfuron had a half-life of 7 days, whereas that of metabolite 1 was similar to that in water (about 3.5 days). The degradation of the two major metabolites was also studied in soil suspensions with the pure compounds at concentrations ranging from 1 to 10 mg l(-1). The half-life of metabolite 1 ranged from 3.9 to 5 days, close to the previous values. Metabolite 2 was more persistent and its degradation is strongly dependent on the initial concentration (C0): half-life values ranged from 8.1 to 55 days at 2-10 mg l(-1), respectively. These values are higher than those determined from the kinetics of metabolite 1 transformation into metabolite 2 (t(1/2) = 8-19 days). The ecotoxicity of the three chemicals was evaluated through their effect on Daphnia magna and Vibrio fischeri (Microtox bioassay). No effect was observed on D. magna with 24 and 48 h acute toxicity tests. Similarly, no toxic effect was observed with the Microtox test for the three chemicals in the range of concentrations tested that included the field application dose. Thus, being of low persistence and lacking acute toxicity, these chemicals present a low environmental risk. However, chronic effects should be studied in order to confirm the safety of rimsulfuron and its major metabolites.  相似文献   
275.
Environmental Science and Pollution Research - This study aimed to use bioassays (single and multispecies) with organisms from different trophic levels to assess soil quality in reclaimed coal...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号