首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1805篇
  免费   28篇
  国内免费   15篇
安全科学   53篇
废物处理   67篇
环保管理   298篇
综合类   303篇
基础理论   431篇
环境理论   4篇
污染及防治   470篇
评价与监测   134篇
社会与环境   83篇
灾害及防治   5篇
  2023年   19篇
  2022年   20篇
  2021年   25篇
  2020年   24篇
  2019年   23篇
  2018年   39篇
  2017年   47篇
  2016年   43篇
  2015年   46篇
  2014年   51篇
  2013年   127篇
  2012年   73篇
  2011年   108篇
  2010年   77篇
  2009年   92篇
  2008年   95篇
  2007年   115篇
  2006年   84篇
  2005年   73篇
  2004年   72篇
  2003年   67篇
  2002年   78篇
  2001年   33篇
  2000年   26篇
  1999年   18篇
  1998年   19篇
  1997年   23篇
  1996年   18篇
  1995年   23篇
  1994年   25篇
  1993年   13篇
  1992年   16篇
  1991年   15篇
  1990年   12篇
  1989年   12篇
  1988年   17篇
  1987年   12篇
  1986年   15篇
  1984年   8篇
  1983年   10篇
  1982年   11篇
  1981年   9篇
  1980年   7篇
  1979年   10篇
  1978年   7篇
  1977年   5篇
  1976年   6篇
  1974年   6篇
  1955年   5篇
  1954年   8篇
排序方式: 共有1848条查询结果,搜索用时 593 毫秒
411.
412.
Chung N  Alexander M 《Chemosphere》2002,48(1):109-115
Sixteen soils with markedly different properties were analyzed to determine their porosity in the range of 7 nm-10 microm, cation-exchange capacity (CEC), surface area and clay mineralogy. The extent of sequestration of phenanthrene and atrazine has been shown to differ markedly among these soils. Correlations were sought between soil characteristics and four methods of measuring sequestration. Simple correlation analysis showed that some but not all measures of phenanthrene and atrazine sequestration were highly correlated with organic C content, nanoporosity or CEC but not other properties of the soils. Multiple linear-regression analysis suggested an interaction of organic C content with soil texture, CEC or surface area in determining the extent of atrazine or phenanthrene sequestration. We conclude that organic C content, CEC and other properties of soil may be useful predictors of sequestration of some compounds.  相似文献   
413.
A novel risk index for the vulnerability of groundwater by pollutants is defined as the form parameter of the Pareto distribution and estimated from dye tracer experiments. The Pareto distribution appears as the limit distribution of the extreme value theory, which has been applied to an idealized model of drops that run along a path. The properties of the risk index are investigated by a Monte Carlo study, where the paths are modelled by means of Gaussian random fields. The method is applied to three profiles obtained from Brilliant Blue tracer experiments of the soil physics group at ETH Zurich. It is shown that a single profile can be rather well characterised by the risk index. However, due to the high variability of the dye tracer profiles, an estimated number of at least 15 profile pictures are necessary to characterise a soil.  相似文献   
414.
Significantly higher contents of mercury were found in fungi growing in the vicinity of a large Finnish chlor-alkali plant than in a control area. The highest concentrations (72–200 ppm dry wt) were found in Agaricus-species. The mercury contents in mycorrhizal fungi did not generally exceed the Finnish safety limit of 0.8 ppm.  相似文献   
415.
416.
The carabid faunas of six woodlands at varying distances from a source of heavy metal pollution were studied. Concentrations of zinc, lead, cadmium and copper were determined in three surface layers at each wood. Whereas no gross effects of pollution on populations were identified, some differences relating to the ecology and life histories of the animals were found. The numbers of individuals and numbers of species of Carabidae at each site were not significantly correlated to metal concentration. However, species diversities (Shannon Weiner H') were. Later dates of median capture of total Carabidae were found in the sites nearest to the pollution source. This also occurred with a common species, Nebria brevicollis. At the most polluted site this species also showed an absence of summer diapause. This may be relatd to scarcity of prey. Negative correlations of numbers of spring breeders with metal concentration but positive correlations of numbers of spring breeders with in all the soil layers. The sites were significantly different in the relative distributions of individuals in each of four size categories.  相似文献   
417.
Abstract

The content of Al, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mn, Ni, Rb, Se, Sr, and Zn in fruiting bodies of edible mushrooms Calocybe gambosa, Entoloma clypeatum, Entoloma saepium, Xerocomellus chrysenteron, and Amanita rubescens growing in an orchard planted with fruit trees and situated close to a high-grown forest was studied during years 2016–2018. A. rubescens showed the highest potential of the element accumulation with bioconcentration factors of 48.5, 16.2, 7.80, 6.53, 1.75, and 1.68 obtained for Rb, Cd, Cu, Zn, Sr, and Mg, respectively. Both Entoloma species accumulated the elements similarly with bioconcentration factors >1.0 obtained for Rb, Cu, Cd, and Mg. Bioconcentration factors <0.05 were obtained for Al, Cr, Fe, and Pb in all studied species. The contents of beryllium (<0.1?mg/kg dry matter) were always the lowest among the studied elements. The contents of some elements of studied mushroom species significantly fluctuated over the years. Despite the fact that some studied elements (As, Be, Cd, Pb, Ni) are considerably toxic for humans, the pronounced effect on health is not expected if the studied mushroom species are consumed occasionally and do not represent the main component of the diet.  相似文献   
418.
419.
Schoonen M  Smirnov A  Cohn C 《Ambio》2004,33(8):539-551
The possible role of minerals in prebiotic chemistry is discussed. Reactions involving the transformation of inorganic forms of the biogenic elements into simple organic molecules are emphasized. Three central issues are presented in detail: i) the types of reactions minerals could possibly have promoted; ii) the availability of minerals with catalytic potential on early Earth; and iii) the available research strategy and methods to evaluate the roles minerals may have played in prebiotic chemistry on early Earth.  相似文献   
420.
Background, Aim and Scope The cow-calf (Bos taurus) industry in subtropical United States and other parts of the world depends almost totally on grazed pastures. Establishment of complete, uniform stand of bahiagrass (BG) in a short time period is important economically. Failure to obtain a good BG stand early means increased encroachment of weeds and the loss of not only the initial investment costs, but production and its cash value. Forage production often requires significant inputs of lime, N fertilizer, and less frequently of P and K fertilizers. Domestic sewage sludge or biosolids, composted urban plant debris, waste lime, phosphogypsum, and dredged materials are examples of materials that can be used for fertilizing and liming pastures. Perennial grass can be a good choice for repeated applications of sewage sludge. Although sewage sludge supply some essential plant nutrients and provide soil property-enhancing organic matter, land-application programs still generate some concerns because of possible health and environmental risks involved. The objectives of this study were to evaluate the cumulative and residual effects of repeated applications of sewage sludge on (i) bahiagrass (BG, Paspalum notatum Flügge) production over years with (1997–2000) and without (2001–2002) sewage sludge applications during a 5-yr period, and (ii) on nutrients status of soil that received annual application of sewage sludge from 1997 to 2000 compared with test values of soils in 2002 (with no sewage sludge application) in South Florida.Methods The field experiment was conducted at the University of Florida Agricultural Research and Education Center, Ona, FL (27o26’N, 82o55’W) on a Pomona fine sandy soil. With the exception of the control, BG plots received annual sewage sludge and chemical fertilizers applications to supply 90 or 180 kg total N ha–1 yr–1 from 1997 to 2000. Land application of sewage sludge and fertilizer ceased in 2001 season. In early April 1998, 1999, and 2000, plots were mowed to 5-cm stubble and treated with the respective N source amendments. The experimental design was three randomized complete blocks with nine N-source treatments: ammonium nitrate (AMN), slurry biosolids of pH 7 (SBS7), slurry biosolids of pH 11 (SBS11), lime-stabilized cake biosolids (CBS), each applied to supply 90 or 180 kg N ha–1, and a nonfertilized control (Control). Application rates of sewage sludge were calculated based on the concentration of total solids in materials as determined by the American Public Health Association SM 2540G method and N in solids. The actual amount of sewage sludge applications was based on the amount required to supply 90 and 180 kg N ha–1. Sewage sludge materials were weighed in buckets and uniformly applied to respective BG plots. Soil samples were collected in June 1997, June 1999, and in June 2002 from 27 treatment plots. In 1997 and 1999, soil samples were collected using a steel bucket type auger from the 0- to 20-, 20- to 40-, 40- to 60-, and 60- to 100-cm soil depths. Forage was harvested on 139, 203, 257, and 307 day of year (DOY) in 1998; 125, 202, 257, and 286 DOY in 1999; 179, 209, 270, and 301 DOY in 2000; and on 156 and 230 DOY in 2002 (no sewage sludge applications) to determine the residual effect of applied sewage sludge following repeated application. Forage yield and soils data were analyzed using analysis of variance (PROC ANOVA) procedures with year and treatment as the main plot and sub-plot, respectively. As a result of significant year effects on forage yield, data were reanalyzed annually (i.e., 1998, 1999, 2000, and 2002).Results and Discussion All sewage sludges used in this study were of class B in terms of USEPA’s pathogens and pollutant concentration limit. Pathogen and chemical composition of the class B sewage sludge that were used in the study were all in compliance with the USEPA guidelines. The liquid sludge (SBS11) had the lowest fecal coliform counts (0.2 x 106 CFU kg–1) while the cake sewage sludge (CBS) had the greatest coliform counts of 178 x 106 CFU kg–1. The fecal coliform counts for SBS7 was about 33 x 106 CFU kg–1. Average soil test values in June 2002 exhibited: i) decrease in TIN (NO3-N + NH4-N), TP, K, Ca, Mg, Mn, and Fe; and ii) slight increase in Zn and Cu when compared with the June 1997 soil test results. The overall decrease in soil test values in 2002 might be associated with nutrient cycling and plant consumption. Although the average BG forage yield in 2002 (2.3 ± 0.7 Mg ha–1) was slightly lower than in 2000 (3.5 ± 1.2 Mg ha–1), yield differences in 2002 between the control (1.2 + 0.2 Mg ha–1) and treated plots (2.3 ± 0.5 Mg ha–1 to 3.3 ± 0.6 Mg ha–1) were indicative of a positive residual effect of applied sewage sludge. This study has shown that excessive build up of plant nutrients may not occur in beef cattle pastures that repeatedly received sewage sludge while favoring long-term increased forage yield of BG. All sources of N (sewage sludge and AMN) gave better forage production than the unfertilized control during years with sewage sludge application (1997–2000) and also during years with no sewage sludge application (2001–2002). The favorable residual effects of applied sewage sludge in 2002 may have had received additional boost from the amount of rainfall in the area.Conclusions Repeated applications of sewage sludge indicate no harmful effects on soil quality and forage quality. Our results support our hypothesis that repeated land application of sewage sludge to supply 90 and 180 kg N ha–1 would not increase soil sorption for nutrients and trace metals. Results have indicated that the concentrations of soil TIN and TP declined by almost 50% in plots with different nitrogen sources from June 1997 to June 2002 suggesting that enrichment of nitrogen and phosphorus is insignificant. The concentrations of soil nitrogen and phosphorus in 2002 following repeated application of sewage sludge were far below the contamination risk in the environment. The residual effect of these sewage sludge over the long term can be especially significant in many areas of Florida where only 50% of the 1 million ha of BG pastures are given inorganic nitrogen yearly.Recommendation and Outlook Successive land application of sewage sludge for at least three years followed by no sewage sludge application for at least two years may well be a good practice economically because it will boost and/or maintain sustainable forage productivity and at the same time minimize probable accumulation of nutrients, especially trace metals. Consecutive applications of sewage sludge may result in build up of some trace metals in some other states with initial high metallic content, but in this study, no detrimental effects on soil chemical properties were detected. The possibilities for economically sound application strategies are encouraging, but more and additional research is required to find optimal timing and rates that minimizes negative impacts on soil quality in particular or the environment in general. For proper utilization of sewage sludge, knowledge of the sewage sludges’ composition, the crop receiving it, are absolutely crucial, so that satisfactory types and rates are applied in an environmentally safe manner. There is still much to be learned from this study and this investigation needs to continue to determine whether the agricultural and ecological objectives are satisfied over the longer term.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号