首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   130篇
  免费   3篇
  国内免费   11篇
安全科学   4篇
废物处理   11篇
环保管理   15篇
综合类   32篇
基础理论   10篇
污染及防治   51篇
评价与监测   16篇
社会与环境   4篇
灾害及防治   1篇
  2022年   2篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   1篇
  2017年   7篇
  2016年   11篇
  2015年   7篇
  2014年   9篇
  2013年   11篇
  2012年   11篇
  2011年   10篇
  2010年   5篇
  2009年   8篇
  2008年   5篇
  2007年   16篇
  2006年   7篇
  2005年   7篇
  2004年   10篇
  2003年   6篇
  2002年   3篇
  2001年   1篇
排序方式: 共有144条查询结果,搜索用时 15 毫秒
21.
Hydrologic modeling outputs are influenced by how a watershed system is represented. Channel routing is a typical example of the mathematical conceptualization of watershed landscape and processes in hydrologic modeling. We investigated the sensitivity of accuracy, equifinality, and uncertainty of Soil and Water Assessment Tool (SWAT) modeling to channel dimensions to demonstrate how a conceptual representation of a watershed system affects streamflow and sediment modeling. Results showed the amount of uncertainty and equifinality strongly responded to channel dimensions. On the other hand, the model performance did not significantly vary with the changes in the channel representation due to the degree of freedom allowed by the conceptual nature of hydrologic modeling in the parameter calibration. Such findings demonstrated good modeling performance statistics do not necessarily mean small output uncertainty, and partial improvements in the watershed representation may neither increase modeling accuracy nor reduce uncertainty. We also showed the equifinality and uncertainty of hydrologic modeling are case‐dependent rather than specific to models or regions, suggesting great caution should be used when attempting to transfer uncertainty analysis results to other modeling studies, especially for ungauged watersheds. Editor's note: This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.  相似文献   
22.
Printed circuit boards incorporated in most electrical and electronic equipment contain valuable metals such as Cu, Ni, Au, Ag, Pd, Fe, Sn, and Pb. In order to employ a hydrometallurgical route for the recycling of valuable metals from printed circuit boards, a mechanical pre-treatment step is needed. In this study, the metallic components from waste printed circuit boards have been enriched using a mechanical separation process. Waste printed circuit boards shredded to <10mm were milled using a stamp mill to liberate the various metallic components, and then the milled printed circuit boards were classified into fractions of <0.6, 0.6-1.2, 1.2-2.5, 2.5-5.0, and >5.0mm. The fractions of milled printed circuit boards of size <5.0mm were separated into a light fraction of mostly non-metallic components and a heavy fraction of the metallic components by gravity separation using a zig-zag classifier. The >5.0mm fraction and the heavy fraction were subjected to two-step magnetic separation. Through the first magnetic separation at 700 Gauss, 83% of the nickel and iron, based on the whole printed circuit boards, was recovered in the magnetic fraction, and 92% of the copper was recovered in the non-magnetic fraction. The cumulative recovery of nickel-iron concentrate was increased by a second magnetic separation at 3000 Gauss, but the grade of the concentrate decreased remarkably from 76% to 56%. The cumulative recovery of copper concentrate decreased, but the grade increased slightly from 71.6% to 75.4%. This study has demonstrated the feasibility of the mechanical separation process consisting of milling/size classification/gravity separation/two-step magnetic separation for enriching metallic components such as Cu, Ni, Al, and Fe from waste printed circuit boards.  相似文献   
23.
A comparative study on Fe/Al, Fe/Al/Cu, and Fe/Al/Ni catalysts in high-temperature water–gas shift reaction (HT–WGS) using simulated waste-derived synthesis gas has been carried out. The metal oxide (Cu and Ni) and aluminum incorporated Fe catalysts were designed to get highly active HT–WGS catalysts. Despite the high CO concentration in the simulated waste-derived synthesis gas, Fe/Al/Cu catalyst exhibited the highest CO conversion (84 %) and 100 % selectivity to CO2 at a very high gas hourly space velocity (GHSV) of 40,057 h?1. The outstanding catalytic performance is mainly due to easier reducibility, the synergy effect of Cu and Al, and the stability of the magnetite.  相似文献   
24.
As cities are becoming increasingly aware of problems related to conventional mobile collection systems, automated pipeline-based vacuum collection (AVAC) systems have been introduced in some densely populated urban areas. The reasons are that in addition to cost savings, AVAC systems can be efficient, hygienic, and environmentally friendly. Despite difficulties in making direct comparisons of municipal waste between a conventional mobile collection system and an AVAC system, it is meaningful to measure the quantities in each of these collection methods either in total or on a per capita generation of waste (PCGW, g/(day*capita)) basis. Thus, the aim of this study was to assess the difference in per capita generation of household waste according to the different waste collection methods in Korea. Observations on household waste show that there were considerable differences according to waste collection methods. The value of per capita generation of food waste (PCGF) indicates that a person in a city using AVAC produces 60 % of PCGF (109.58 g/(day*capita)), on average, compared with that of a truck system (173.10 g/(day*capita)) as well as 23 %p less moisture component than that with trucks. The value of per capita generation of general waste (PCGG) in a city with an AVAC system showed 147.73 g/(day*capita), which is 20 % less than that with trucks delivered (185 g/(day*capita)). However, general waste sampled from AVAC showed a 35 %p increased moisture content versus truck delivery.  相似文献   
25.
In this study, the characteristics of total water-soluble organic carbon (WSOC) and isolated WSOC fractions were examined to gain a better understanding of the pathway of organic aerosol production. 24 h PM(2.5) samples were collected during the summer (July 28-August 28, 2009) at an urban site in Korea. A glass column filled with XAD7HP resin was used to separate the filtered extracts into hydrophilic (WSOC(HPI)) and hydrophobic (WSOC(HPO)) fractions. The origins of air mass pathways arriving at the sampling site were mostly classified into three types, those originating over the East Sea of Korea that passed over the eastern inland urban and industrial regions (type I); those from the marine (western/southwestern/southern marine) and passed over the national industrial complex regions (type II); and those from northeastern China that passed through North Korea and metropolitan areas of South Korea (type III). Measurements showed an increase in the average WSOC fraction of total OC from the type II to III air mass (53 to 64%) periods. Also, higher SO(4)(2-)/SO(x) (=SO(2) + SO(4)(2-)) was observed in the type III air mass (0.70) than those in the types I (0.49) and II (0.43). According to the average values of WSOC/OC and SO(4)(2-)/SO(x), measurements suggest that the aerosols collected during the type III air mass period were more aged or photo-chemically processed than those during the types I and II air mass periods. The relationship between the SO(4)(2-)/SO(x) and WSOC/OC (R(2) = 0.64) suggests that a significant fraction of the observed WSOC at the site could be formed by an oxidation process similar to SO(4)(2-) aerosols, probably the oxidation process using OH radicals, or in-cloud processing. The photochemical production of WSOC(HPO) was also observed to significantly contribute to the total OC.  相似文献   
26.
We characterize the monthly variation in (1 → 3)-β-d-glucan concentration measured over the course of 1 year, and we evaluate the characteristics of size selection using a two-stage cyclone sampler. The (1 → 3)-β-d-glucan concentrations were measured in four bio-related laboratories. A total of 156 samples were collected using a new two-stage cyclone sampler. Analysis of (1 → 3)-β-d-glucan was performed using the kinetic Limulus amebocyte lysate assay. The study showed that airborne (1 → 3)-β-d-glucan concentrations were significantly higher in laboratory D (mean ± SD 1,105?±?1,893 pg/m3) and in the spring (5,458 pg/m3). The highest concentration of (1 → 3)-β-d-glucan occurred in the spring, particularly in May.  相似文献   
27.
28.
Ambient air monitoring of PCDD/Fs and co-PCBs in Gyeonggi-do, Korea   总被引:3,自引:0,他引:3  
Kim DG  Min YK  Jeong JY  Kim GH  Kim JY  Son CS  Lee DH 《Chemosphere》2007,67(9):1722-1727
We started the monitoring for PCDD/Fs in ambient air and soil in August 2001, and co-PCBs in January 2002. Decreasing of PCDD/Fs and co-PCBs levels in ambient air were observed. The higher PCDD/Fs levels were found in winter and lower in autumn. We found that the industrial incinerators influenced the PCDD/Fs levels in ambient air. In the 2,3,7,8-substituted PCDD/Fs concentration profiles, the three major congeners occupied 67% of the total mass. In case of co-PCBs, PCB#118, #105 and #77 were observed as the main congeners. Five cluster groups discriminated by ratio of four components, O(8)CDD, 1,2,3,4,6,7,8-H(7)CDD, 1,2,3,4,6,7,8-H(7)CDF and O(8)CDF, were obtained from HCA (hierarchical cluster analysis).  相似文献   
29.
An YJ  Lee JH  Jeong SW 《Chemosphere》2007,68(7):1377-1381
Gas-liquid phase partitioning is a key physical property that can predict the environmental fate of a compound between two phases. Several environmental factors have been known to affect the gas-liquid phase partitioning. We investigated the influence of surfactant on the gas-liquid phase partitioning of hydrogen peroxide (H(2)O(2)). The surfactant used was ammonium perfluorooctanoate (APFO). H(2)O(2) solution containing the surfactant was equilibrated in a closed system and gas phase H(2)O(2) concentration was measured by the peroxyoxalate chemiluminescence (PO-CL) method. Gas phase H(2)O(2) concentrations remained constant below the critical micelle concentration (CMC) and increased linearly with surfactant concentration above the CMC, which indicated that surfactant micelles influenced the gas-liquid phase partitioning of H(2)O(2). This result showed that H(2)O(2)-micelle interactions are less favorable than H(2)O(2)-H(2)O interactions. Surfactant monomers did not affect the gas-liquid phase partitioning of H(2)O(2) due to the absence of micelles. Solvent (methanol) effect was also investigated and showed that gas phase H(2)O(2) concentrations increased with the addition of solvent. This indicated the unfavorable interaction of H(2)O(2) with hydrophobic medium compared to hydrophilic one. It is consistent with the result that H(2)O(2)-micelles has a weaker interaction than H(2)O(2)-water because surfactant micelles are hydrocarbon-like organic phase rather than aqueous phase.  相似文献   
30.
An electrochemical COD (chemical oxygen demand) sensor using an electrode-surface grinding unit was investigated. The electrolyzing (oxidizing) action of copper on an organic species was used as the basis of the COD measuring sensor. Using a simple three-electrode cell and a surface grinding unit, the organic species is activated by the catalytic action of copper and oxidized at a working electrode, poised at a positive potential. When synthetic wastewater was fed into the system, the measured Coulombic yields were found to be dependent on the COD of the synthetic wastewater. A linear correlation between the Coulombic yields and the COD of the synthetic wastewater was established (10-1000 mg L(-1)) when the electrode-surface grinding procedure was activated briefly at 8 h intervals. When various kinds of wastewater samples obtained from various sewage treatment plants were measured, linear correlations (r(2)> or = 0.92) between the measured EOD (electrochemical oxygen demand) value and COD of the samples were observed. At a practical wastewater treatment plant, the measurement system was successfully operated with high accuracy and good stability over 3 months. These experimental results show that the application of the measurement system would be a rapid and practical method for the determination of COD in water industries.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号