首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   742篇
  免费   8篇
  国内免费   35篇
安全科学   10篇
废物处理   40篇
环保管理   44篇
综合类   55篇
基础理论   108篇
污染及防治   419篇
评价与监测   62篇
社会与环境   43篇
灾害及防治   4篇
  2023年   29篇
  2022年   154篇
  2021年   145篇
  2020年   46篇
  2019年   47篇
  2018年   41篇
  2017年   52篇
  2016年   45篇
  2015年   28篇
  2014年   35篇
  2013年   40篇
  2012年   23篇
  2011年   24篇
  2010年   10篇
  2009年   9篇
  2008年   12篇
  2007年   9篇
  2006年   7篇
  2005年   7篇
  2004年   2篇
  2003年   4篇
  2002年   1篇
  2001年   1篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1985年   1篇
  1974年   1篇
排序方式: 共有785条查询结果,搜索用时 15 毫秒
391.
Brassica species are very effective in remediation of heavy metal contaminated sites. Lead (Pb) as a toxic pollutant causes number of morphological and biochemical variations in the plants. Synthetic chelator such as ethylenediaminetetraacetic acid (EDTA) improves the capability of plants to uptake heavy metals from polluted soil. In this regard, the role of EDTA in phytoextraction of lead, the seedlings of Brassica napus L. were grown hydroponically. Lead levels (50 and 100 μM) were supplied alone or together with 2.5 mM EDTA in the nutrient culture. After 7 weeks of stress, plants indicated that toxicity of Pb caused negative effects on plants and significantly reduced growth, biomass, chlorophyll content, gas exchange characteristics, and antioxidant enzymes activities such as superoxide dismutase (SOD), guaiacol peroxidase (POD), ascorbate peroxidase (APX), and catalase (CAT). Exposure to Pb induced the malondialdehyde (MDA), and hydrogen peroxide (H2O2) generation in both shoots and roots. The addition of EDTA alone or in combination with Pb significantly improved the plant growth, biomass, gas exchange characteristics, chlorophyll content, and antioxidant enzymes activities. EDTA also caused substantial improvement in Pb accumulation in Brassica plants. It can be deduced that application of EDTA significantly lessened the adverse effects of lead toxicity. Additionally, B. napus L. exhibited greater degree of tolerance against Pb toxicity and it also accumulated significant concentration of Pb from media.  相似文献   
392.
Cadmium usually hampers plant growth, but bacterial inoculation may improve stress tolerance in plants to Cd by involving various mechanisms. The objective was to characterize and identify bacteria that improve plant growth under Cd stress and reduce Cd uptake. Cadmium-tolerant bacteria were isolated from rhizosphere soil, which was irrigated with tannery effluent, and six strains were selected as highly tolerant to Cd, showing minimum inhibitory concentration as 500 mg L?1 or 4.45 mmol L?1. These strains were identified by 16S rRNA gene analysis and functional analysis in regard to plant growth promotion characteristics. To determine their effect on cereal growth under Cd stress, seeds were inoculated with these strains individually and grown in soil contaminated with three Cd levels (0, 40 and 80 mg kg?1). Biomass production, relative water content (RWC), electrolyte leakage (ELL) and tissue Cd concentration were measured. Biomass of both cereals was inhibited strongly when exposed to Cd; however, bacterial inoculation significantly reduced the suppressive effect of Cd on cereal growth and physiology. The bacterial isolates belonged to the genera Klebsiella, Stenotrophomonas, Bacillus and Serratia. Maize was more sensitive than wheat to Cd. Klebsiella sp. strain CIK-502 had the most pronounced effects in promoting maize and wheat growth and lowering Cd uptake under Cd stress.  相似文献   
393.
Extensive degradation of Indonesian peatlands by deforestation, drainage and recurrent fires causes release of huge amounts of peat soil carbon to the atmosphere. Construction of drainage canals is associated with conversion to other land uses, especially plantations of oil palm and pulpwood trees, and with widespread illegal logging to facilitate timber transport. A lowering of the groundwater level leads to an increase in oxidation and subsidence of peat. Therefore, the groundwater level is the main control on carbon dioxide emissions from peatlands. Restoring the peatland hydrology is the only way to prevent peat oxidation and mitigate CO2 emissions. In this study we present a strategy for improved planning of rewetting measures by dam constructions. The study area is a vast peatland with limited accessibility in Central Kalimantan, Indonesia. Field inventory and remote sensing data are used to generate a detailed 3D model of the peat dome and a hydrological model predicts the rise in groundwater levels once dams have been constructed. Successful rewetting of a 590 km2 large area of drained peat swamp forest could result in mitigated emissions of 1.4–1.6 Mt CO2 yearly. This equates to 6% of the carbon dioxide emissions by civil aviation in the European Union in 2006 and can be achieved with relatively small efforts and at low costs. The proposed methodology allows a detailed planning of hydrological restoration of peatlands with interesting impacts on carbon trading for the voluntary carbon market.  相似文献   
394.
珍珠岩对蚯蚓同步处理污泥-狐尾藻的研究   总被引:1,自引:0,他引:1  
本研究利用太平二号蚯蚓构建生物反应器,以污水处理厂脱水污泥和粉绿狐尾藻作为研究对象,探究添加不同比例的珍珠岩对蚯蚓动物反应器处理混合物的减量化、无害化和资源化效果.结果表明,添加珍珠岩能够显著提高蚯蚓动物反应器同步处理污泥-狐尾藻的效率,经反应器处理后,混合物减量化效果明显,处理后产物的pH、有机质、碱解氮和重金属含量(Cu、Pb、Cr)均表现为明显下降,电导率(EC)和速效磷显著上升.经反应器处理后,产物品质符合在pH6.5的中性和碱性土壤上的施用标准.结果显示,当珍珠岩添加比例为4%时,对动物反应器的实用性和经济性效果最佳.  相似文献   
395.
This paper presents an experimental investigation and characterization of a novel technique of nanoscale electro-machining (EM) in atmospheric air, named dry nano-EM, by using scanning tunneling microscopy (STM) as the platform for nanomachining. The electro-machining has been conducted in near field by maintaining a gap distance of 1–2 nm between the Platinum–Iridium [Pt–Ir (80:20)] tool electrode and atomically flat gold substrate with the air as dielectric medium. An in situ process of evaluating the tool quality before and after machining has been used by monitoring the current–displacement (IZ) spectroscopy curves. The mechanism of dry nano-EM has been presented as well as the machining performance of the process has been evaluated. Based on the observations, it has been established that field induced evaporation due to intense heat generated at the gap width is the primary mechanism of material removal in dry nano-EM. The experimental results show that dry nano-EM is capable of fabricating consistent nano-features with good repeatability. The volume of material removal increases almost linearly with increasing number of features machined and machining time, indicating the consistency in the dimensions of the nano-features. Finally, dry nano-EM is established as a technique capable of machining 50–100 features in a pre-defined manner with average feature size of 7.5–10 nm in a single pass, thus suitable for nano-patterning in atomically flat electrically conducting surfaces.  相似文献   
396.
397.
Degradation of soil and water from discharge of untreated industrial effluent is alarming in Bangladesh. Therefore, buildup of heavy metals in soil from contaminated effluent, their entry into the food chain and effects on rice yield were quantified in a pot experiment. The treatments were comprised of 0, 25%, 50%, 75% and 100% industrial effluents applied as irrigation water. Effluents, initial soil, different parts of rice plants and post-harvest pot soil were analyzed for various elements, including heavy metals. Application of elevated levels of effluent contributed to increased heavy metals in pot soils and rice roots due to translocation effects, which were transferred to rice straw and grain. The results indicated that heavy metal toxicity may develop in soil because of contaminated effluent application. Heavy metals are not biodegradable, rather they accumulate in soils, and transfer of these metals from effluent to soil and plant cells was found to reduce the growth and development of rice plants and thereby contributed to lower yield. Moreover, a higher concentration of effluent caused heavy metal toxicity as well as reduction of growth and yield of rice, and in the long run a more aggravated situation may threaten human lives, which emphasizes the obligatory adoption of effluent treatment before its release to the environment, and regular monitoring by government agencies needs to be ensured.  相似文献   
398.
This study investigates the potential of the comet and micronucleus assays of fish DNA as a means of screening the toxicity of aquatic environments. Catla catla and Cirrhinus mrigala collected from the River Chenab in Pakistan were used as a case study for the application of comet and micronucleus techniques. Comet and micronucleus assays were used to compare DNA damage in C. catla and C. mrigala collected from polluted areas of the River Chenab and farmed fish. Atomic absorption spectrophotometry showed an acute level of toxicity from Cd, Cu, Mn, Zn, Pb, Cr, Sn, and Hg in river water. Comet assay showed significant (p < 0.05) DNA damage in C. catla representing 17.33 ± 2.42, 11.53 ± 2.14, and 14.17% DNA in the comet tail, averaged from three sites of the polluted area of the river. Tail moment was observed as 10.06 ± 2.71, 3.11 ± 0.74, and 14.70 ± 1.89, while olive moment was 8.85 ± 1.84, 3.83 ± 0.76, and 7.11 ± 0.73, respectively. Highly significant (p < 0.01) damage was reported in C. mrigala as 37.29 ± 2.51, 34.96 ± 2.53, and 38.80 ± 2.42% DNA in comet tail, tail moment was 23.48 ± 3.90, 19.78 ± 4.26, and 14.30 ± 1.82, and olive moment was 16.22 ± 2.04, 13.83 ± 1.96, and10.99 ± 0.90. Significant (p < 0.05) differences were observed in genotoxicity between farmed and polluted area fish. Micronucleus assay showed a similar picture of significant difference in respect to single and double micronucleus induction: i.e., 23.20 ± 4.19 and 2.80 ± 1.07‰ in C. catla and 44.80 ± 3.73 and 06.20 ± 0.97‰, respectively, in C. mrigala. Nuclear abnormalities were found as 6.00 ± 0.84 and 09.60 ± 1.72/thousand cells, respectively, in both species. The results of this study suggest that these novel fish DNA damage assays can be used as an expedient toxicity screening for aquatic environments.  相似文献   
399.
The abilities of sorghum (Sorghum bicolor L.) and oat (Avena sativa L.) to take up heavy metals from soils amended with ethylenediaminetetraacetic acid (EDTA) were assessed under greenhouse conditions. Both plants were grown in two soils contaminated with heavy metals (Gujranwala—silty loam and Pacca—clay loam). The soils were treated with 0, 0.625, 1.25, and 2.5 mM EDTA kg?1 soil applied at both 45 and 60 days after sowing (DAS); the experiment was terminated at 75 DAS. Addition of EDTA significantly increased concentrations of Cd, Cr, and Pb in roots and shoots, and bio-concentration factors and phytoextraction rates were also increased. Post-harvest soil analysis showed that soluble fractions of metals were also increased significantly. The increase in Cd was ≈ 3-fold and Pb was ≈ 15-fold at the highest addition of EDTA in Gujranwala soil; in the Pacca soil, the increase was less. Similarly, other phytoremediation factors, such as metal translocation, bio-concentration factor, and phytoextraction, efficiency were also maximum when soils were treated with 2.5 mM EDTA kg?1 soil. The study demonstrated that sorghum was better than oat for phytoremediation.  相似文献   
400.
Industrialization and excessive use of pesticides for boosting agricultural production have adversely affected the ecosystem, polluting natural water reserves. Remediation of contaminated water has been an area of concern with numerous techniques being applied to improve the quality of naturally available water to the level suitable for human consumption. Most of these methods, however, generate by-products that are sometimes toxic. Heterogenous photocatalysis using metal oxide nanostructures for water purification is an attractive option because no harmful by-products are created. A discussion on possible methods to engineer metal oxides for visible light photocatalysis is included to highlight the use of solar energy for water purification. Multifunctional photocatalytic membranes are considered advantageous over freely suspended nanoparticles due to the ease of its removal from the purified water. An overview of water remediation techniques is presented, highlighting innovations through nanotechnology for possible addressing of problems associated with current techniques.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号