首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   214篇
  免费   6篇
  国内免费   3篇
安全科学   13篇
废物处理   18篇
环保管理   25篇
综合类   47篇
基础理论   45篇
污染及防治   53篇
评价与监测   11篇
社会与环境   10篇
灾害及防治   1篇
  2023年   3篇
  2022年   5篇
  2021年   5篇
  2020年   2篇
  2019年   5篇
  2018年   7篇
  2017年   5篇
  2016年   10篇
  2015年   8篇
  2014年   10篇
  2013年   15篇
  2012年   18篇
  2011年   13篇
  2010年   14篇
  2009年   12篇
  2008年   15篇
  2007年   9篇
  2006年   15篇
  2005年   7篇
  2004年   10篇
  2003年   5篇
  2002年   6篇
  2001年   2篇
  1999年   1篇
  1998年   3篇
  1997年   2篇
  1996年   4篇
  1995年   1篇
  1994年   6篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1979年   1篇
排序方式: 共有223条查询结果,搜索用时 203 毫秒
131.
We apply a fixed-effects model to examine the impact of trade and environmental policies on air quality at ports along the U.S.-Mexico border. We control for other factors influencing air quality, such as air quality of cities near the border, volume of traffic flows and congestion. Results show the air quality improved after 2004, when the diesel engine policy was applied. We see mixed results for the trade policy, whose implementation time varies across ports along the international border. Controlling for air quality in cities near the border is essential for assessing the policy contributions to air quality.  相似文献   
132.
不同热解温度生物炭对 Cd(Ⅱ)的吸附特性   总被引:45,自引:7,他引:38  
以花生壳和中药渣为原料,分别于300、350、400、500、600℃下慢速热解制备生物炭,并表征其物理化学性质.研究不同p H、吸附时间和Cd(Ⅱ)浓度下生物炭对Cd(Ⅱ)的吸附特征.结果表明,随着热解温度的升高,生物炭的碳化程度增加,比表面积增大,含氧官能团数量减少,π共轭芳香结构更加完备,Ca和Mg等无机元素不断富集,矿物溶解性降低,导致了Cd(Ⅱ)在不同热解温度生物炭上吸附能力及机制的差异.随溶液p H的升高(2.0~6.0),生物炭对Cd(Ⅱ)的吸附量逐渐增加.吸附过程可分为快吸附和慢吸附两个阶段,吸附速度受膜扩散、颗粒内扩散和沉淀作用、离子交换等过程的控制.随热解温度的升高,快吸附在生物炭对Cd(Ⅱ)的吸附中所占比例逐渐降低.高温生物炭(≥500℃)中含氧官能团的锐减及难溶晶体矿物的形成降低了其对Cd(Ⅱ)的快吸附速率.沉淀和离子交换可能是低温生物炭(≤400℃)吸附Cd(Ⅱ)的主要机制;高温生物炭(≥500℃)中更完备的π共轭芳香结构增加了Cd-π作用对吸附的贡献,而难溶磷酸盐和碳酸盐的形成则降低了沉淀作用对吸附的贡献.这些研究结果为筛选对Cd(Ⅱ)具有高效去除或固持能力的功能生物炭(designer biochar)提供了重要的理论数据.  相似文献   
133.
134.
Environmental Science and Pollution Research - Coronavirus disease 2019 (COVID-19) is an infectious disease associated with the respiratory system caused by the SARS-CoV-2 virus. The aim of this...  相似文献   
135.
136.
Fluvial fishes face increased imperilment from anthropogenic activities, but the specific factors contributing most to range declines are often poorly understood. For example, the range of the fluvial‐specialist shoal bass (Micropterus cataractae) continues to decrease, yet how perceived threats have contributed to range loss is largely unknown. We used species distribution models to determine which factors contributed most to shoal bass range loss. We estimated a potential distribution based on natural abiotic factors and a series of currently occupied distributions that incorporated variables characterizing land cover, non‐native species, and river fragmentation intensity (no fragmentation, dams only, and dams and large impoundments). We allowed interspecific relationships between non‐native congeners and shoal bass to vary across fragmentation intensities. Results from the potential distribution model estimated shoal bass presence throughout much of their native basin, whereas models of currently occupied distribution showed that range loss increased as fragmentation intensified. Response curves from models of currently occupied distribution indicated a potential interaction between fragmentation intensity and the relationship between shoal bass and non‐native congeners, wherein non‐natives may be favored at the highest fragmentation intensity. Response curves also suggested that >100 km of interconnected, free‐flowing stream fragments were necessary to support shoal bass presence. Model evaluation, including an independent validation, suggested that models had favorable predictive and discriminative abilities. Similar approaches that use readily available, diverse, geospatial data sets may deliver insights into the biology and conservation needs of other fluvial species facing similar threats.  相似文献   
137.
138.
This pilot study documented the occurrence and levels of brominated flame retardants in the tissues of farmed and wild salmon in southern Chile. Samples of Coho salmon and rainbow trout were obtained from fish farms, rivers and lakes in the Patagonia in Aysen Region, Chile. The samples were analyzed by Gas Chromatography Negative Chemical Ionization Mass Spectrometry for the different polybrominated diphenyl ether (PBDE) congeners. Contaminants were observed in all the samples, and the congeners BDE 17, 28, 47 and 66 were observed in all both farmed and wild samples. The concentrations were higher in the farmed Coho salmon, presenting significant differences with wild salmon. The levels reached 182 pg/g wet weight (ww) vs. 120 ww. In the case of the rainbow trout, the concentrations were lower, although the congener profile was quite similar. The levels reached an average of 100 pg/g ww in the farmed fish versus 110 pg/g ww in wild fish, and no significant difference was observed between the species. In both species, the congener with the highest concentration was BDE 47. Based on this information, the BDE flow was estimated for commerce, which is a form of pollutant transport not usually considered in POP pollution studies. A preliminary estimation indicated that the quantity of PBDEs mobilized by commerce was in the order of kg, and in the case of Chile might reach almost 1 kg.  相似文献   
139.
Resource competition between two fungal parasites in subterranean termites   总被引:1,自引:1,他引:0  
Subterranean termites live in large groups in underground nests where the pathogenic pressure of the soil environment has led to the evolution of a complex interaction among individual and social immune mechanisms in the colonies. However, groups of termites under stress can show increased susceptibility to opportunistic parasites. In this study, an isolate of Aspergillus nomius Kurtzman, Horn & Hessltine was obtained from a collapsed termite laboratory colony. We determined that it was primarily a saprophyte and, secondarily, a facultative parasite if the termite immunity is undergoing a form of stress. This was determined by stressing individuals of the Formosan subterranean termite Coptotermes formosanus Shiraki via a co-exposure to the virulent fungal parasite Metarhizium anisopliae (Metch.) Sorokin. We also examined the dynamics of a mixed infection of A. nomius and M. anisopliae in a single termite host. The virulent parasite M. anisopliae debilitated the termite immune system, but the facultative, fast growing parasite A. nomius dominated the mixed infection process. The resource utilization strategy of A. nomius during the infection resulted in successful conidia production, while the chance for M. anisopliae to complete its life cycle was reduced. Our results also suggest that the occurrence of opportunistic parasites such as A. nomius in collapsing termite laboratory colonies is the consequence of a previous stress, not the cause of the stress.  相似文献   
140.
A geospatial methodology has been developed that utilizes high resolution lidar‐derived DEMs to help track runoff from agricultural fields and identify areas of potential concentrated flow through vegetated riparian areas in the Coastal Plain of Virginia. Points of concentrated flow are identified across 74 agricultural fields within the Virginia portion of the Chesapeake Bay watershed. On average, 70% of the surface area of the agricultural fields analyzed drains through less than 20 m of the field margin, and on average 81% of the field surface area drains through 1% or less of the field margin. Within the riparian buffer, locations that were predicted by the geospatial model to have high levels of concentrated flow were found to exhibit evidence of channelization. Results indicate that flow concentration and channelized flow through vegetated riparian areas may be common along the margin of agricultural fields, resulting in vegetated riparian areas that are less effective at sediment trapping than assumed. Additional results suggest that the regulations governing the location and width of vegetated riparian may not be sufficient to achieve goals for reducing sediment and nutrient runoff from nonpoint agricultural sources. Combined with the increasing availability of lidar‐derived DEMs, the geospatial model presented has the potential to advance management practices aimed at reducing nonpoint source pollution leaving agricultural fields.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号