Regional Environmental Change - Research that projects biophysical changes under climate change is more advanced than research that projects socio-economic changes. There is a need in adaptation... 相似文献
Understanding how cities can transform organic waste into a valuable resource is critical to urban sustainability. The capture and recycling of phosphorus (P), and other essential nutrients, from human excreta is particularly important as an alternative organic fertilizer source for agriculture. However, the complex set of socio-environmental factors influencing urban human excreta management is not yet sufficiently integrated into sustainable P research. Here, we synthesize information about the pathways P can take through urban sanitation systems along with barriers and facilitators to P recycling across cities. We examine five case study cities by using a sanitation chains approach: Accra, Ghana; Buenos Aires, Argentina; Beijing, China; Baltimore, USA; and London, England. Our cross-city comparison shows that London and Baltimore recycle a larger percentage of P from human excreta back to agricultural lands than other cities, and that there is a large diversity in socio-environmental factors that affect the patterns of recycling observed across cities. Our research highlights conditions that may be “necessary but not sufficient” for P recycling, including access to capital resources. Path dependencies of large sanitation infrastructure investments in the Global North contrast with rapidly urbanizing cities in the Global South, which present opportunities for alternative sanitation development pathways. Understanding such city-specific social and environmental barriers to P recycling options could help address multiple interacting societal objectives related to sanitation and provide options for satisfying global agricultural nutrient demand.
Due to the high rates of energy consumption and its impact on environment over the last decades, policy decision-makers are increasingly recognising the need to take actions that allow to address problems associated with the deployment of non-renewable resources and climate changes. One field of action has been the promotion of measures that contribute to improve energy efficiency of countries. The purpose of this study is to identify the main factors explaining changes in energy efficiency applying the multiplicative Log Mean Divisia Index decomposition method for a set of countries (Portugal, UK, Brazil and China) with different socio-economic background and energy mix. The results show that overall energy efficiency trends display different patterns between countries and the same happens within each country from a sectoral perspective. Major drivers of improvements of overall energy efficiency were the intensity effect and the affluence effect, whereas the driver that hampered those improvements was the energy consumption per capita. Some policy implications derived from the results achieved are: policy decision-makers should support measures that promote the adoption of energy-saving technologies resulting from new technological developments; policy measures should be directed to raise awareness of end-users regarding energy efficiency and energy conservation efforts; policy measures promoting economic growth through the development (or expansion) of sectors of activity that consume less energy can also be implemented; finally, policy instruments may also be used to reduce the costs of implementing energy efficiency and energy-saving measures to households and firms. 相似文献
The objective of this paper is to discuss the main barriers for modelling and integrating the environmental performances in the automotive concept design. Incorporating environmental assessment in the early design phase of a vehicle component is known as an important challenge that car makers need to face in order to develop more sustainable design solutions; in this regard, the Life Cycle Assessment is the most widespread methodology for the environmental assessment and comparison of alternatives. The present work illustrates the combination of such methodology with the traditional design procedure at two different levels of the component design phase, material choice and concept design. In particular, the potential benefits originated by a lightweight solution for the automotive component Throttle Body are evaluated by considering environmental and technical implications at the same level. The case study shows that a multi-disciplinary approach for design effectively allows the integration of the environmental issue in the company’s established procedures. However, interpretation of results is still a challenging aspect due to the inevitable contradicting elements which should not discourage to develop comprehensive sustainability assessment within the early design stage. 相似文献
Predictive population models designed to assist managers and policy makers require an explicit treatment of inherent uncertainty and variability. These are particular concerns when modelling non-native and reintroduced species, when data have been collected within one geographical or ecological context but predictions are required for another, or when extending models to predict the consequences of environmental change (e.g., climate or land-use). We present an aspatial, probabilistic framework of hierarchical process models for predicting population growth even when data are sparse or of poor quality. Insight into the factors affecting population dynamics in real landscapes can be provided and Kullback–Leibler distances are used to compare the relative output of models. This flexible yet robust framework gives easily interpretable results, allowing managers as well as modellers to invalidate anomalous models and apply others to real-life scenarios.We illustrate the framework’s power with a meta-analysis of European wild boar (Sus scrofa) data. We test hypotheses about the effect of geographic region, hunting and mast years on wild boar population growth, to build models of wild boar dynamics for the UK. The framework quantifies the importance of hunting pressure as a driver of population growth, and confirms that reproductive success is greatly decreased in poor mast years, suggesting that the key to predicting wild boar dynamics is to ascertain local hunting pressure and to better understand changing food availability. Geography had no significant effect, indicating that it is not a good proxy for modelling the impact of change in climate or land-use on wild boar populations at the European scale. We use the framework to predict population abundance 9 years after an isolated population of wild boar established in the UK; in a comparison with the only field data and two independent modelling exercises, our framework provides the most robust and informative results. 相似文献
The cost effectiveness of catchment-wide funding for the environmental remediation of urban waterways on the scale of a major metropolitan catchment is examined considering the typical land-use and pollutant-export characteristics of urban catchments. The evaluation is performed by comparing the effectiveness of the major stormwater treatment modes for the pollutants of concern with the proportion of pollutant export to which the measure applies. The heavy metals copper, lead, and zinc in the aqueous phase or bound to fine particulates are identified as representative of the pollutants of concern in drainage from urban catchments. The analysis suggests that these priority pollutants are predominantly (79–87%) derived from runoff from residential property and roads as disseminated urban surfaces. Analysis of a specific case of catchment-wide funding of stormwater remediation in the Sydney Harbour catchment, Australia reveals that the funding allocation cannot be expected to have achieved reductions in the loads of priority pollutants due to the types of treatment measures implemented and the sources addressed. The apportionment of funding in better accordance with the maximum potential effectiveness of stormwater treatment modes and the pollutant-export characteristics of urban catchments could thus be expected to achieve a more cost-effective result from such funding initiatives. 相似文献
Parasitic species, which depend directly on host species for their survival, represent a major regulatory force in ecosystems and a significant component of Earth's biodiversity. Yet the negative impacts of parasites observed at the host level have motivated a conservation paradigm of eradication, moving us farther from attainment of taxonomically unbiased conservation goals. Despite a growing body of literature highlighting the importance of parasite‐inclusive conservation, most parasite species remain understudied, underfunded, and underappreciated. We argue the protection of parasitic biodiversity requires a paradigm shift in the perception and valuation of their role as consumer species, similar to that of apex predators in the mid‐20th century. Beyond recognizing parasites as vital trophic regulators, existing tools available to conservation practitioners should explicitly account for the unique threats facing dependent species. We built upon concepts from epidemiology and economics (e.g., host‐density threshold and cost‐benefit analysis) to devise novel metrics of margin of error and minimum investment for parasite conservation. We define margin of error as the risk of accidental host extinction from misestimating equilibrium population sizes and predicted oscillations, while minimum investment represents the cost associated with conserving the additional hosts required to maintain viable parasite populations. This framework will aid in the identification of readily conserved parasites that present minimal health risks. To establish parasite conservation, we propose an extension of population viability analysis for host–parasite assemblages to assess extinction risk. In the direst cases, ex situ breeding programs for parasites should be evaluated to maximize success without undermining host protection. Though parasitic species pose a considerable conservation challenge, adaptations to conservation tools will help protect parasite biodiversity in the face of an uncertain environmental future. 相似文献
129I is one of the more hazardous nuclides occurring in radioactive waste. In the form of I−, its most likely speciation, it is poorly sorbed on most geologic media. Several workers have suggested the use of silver to precipitate I− as the insoluble AgI, in a cemented waste form, or as a “getter”. The efficacy of this procedure is examined by experiment, in conjunction with thermodynamic predictions.The addition of AgNO3 to Portland cement leads to coprecipitation with C-S-H, with low Ag solubilities ( 10 μmg/L); 2–;3 orders of magnitude lower than predicted (from Ag2O). AgI is stable in these matrices, with low aqueous I concentrations (<2 mg/L). In 85% BFS-15% OPC pastes, AgI is unstable due to redox and complexation reactions, with much I− passing into solution; concentrations up to 900 mg/L were observed. It is shown that repository conditions, on closure, are also likely to induce solubilisation of I− from AgI. It is concluded that the use of Ag is unlikely to significantly improve the immobilisation properties of the near field for radioiodine. 相似文献