首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   249篇
  免费   2篇
  国内免费   12篇
安全科学   6篇
废物处理   26篇
环保管理   14篇
综合类   29篇
基础理论   38篇
污染及防治   92篇
评价与监测   25篇
社会与环境   30篇
灾害及防治   3篇
  2023年   8篇
  2022年   34篇
  2021年   28篇
  2020年   7篇
  2019年   9篇
  2018年   14篇
  2017年   14篇
  2016年   15篇
  2015年   11篇
  2014年   7篇
  2013年   20篇
  2012年   10篇
  2011年   17篇
  2010年   12篇
  2009年   15篇
  2008年   10篇
  2007年   3篇
  2006年   6篇
  2005年   3篇
  2004年   3篇
  2002年   1篇
  2001年   3篇
  2000年   1篇
  1998年   1篇
  1996年   4篇
  1995年   2篇
  1991年   1篇
  1987年   1篇
  1985年   1篇
  1983年   2篇
排序方式: 共有263条查询结果,搜索用时 15 毫秒
211.
There are very few reports on the contamination by perfluorinated chemicals (PFCs) in the environment of developing countries, especially regarding their emission from waste recycling and disposal sites. This is the first study on the occurrence of a wide range of PFCs (17 compounds) in ambient water in Vietnam, including samples collected from a municipal dumping site (MD), an e-waste recycling site (ER), a battery recycling site (BR) and a rural control site. The highest PFC concentration was found in a leachate sample from MD (360 ng/L). The PFC concentrations in ER and BR (mean, 57 and 16 ng/L, respectively) were also significantly higher than those detected in the rural control site (mean, 9.4 ng/L), suggesting that municipal solid waste and waste electrical and electronic equipment are potential contamination sources of PFCs in Vietnam. In general, the most abundant PFCs were perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluoroundecanoic acid (PFUDA; <1.4–100, <1.2–100, and <0.5–20 ng/L, respectively). Interestingly, there were specific PFC profiles: perfluoroheptanoic acid and perfluorohexanoic acid (88 and 77 ng/L, respectively) were almost as abundant as PFOA in MD leachate (100 ng/L), whereas PFNA was prevalent in ER and BR (mean, 17 and 6.2 ng/L, respectively) and PFUDA was the most abundant in municipal wastewater (mean, 5.6 ng/L), indicating differences in PFC contents in different waste materials.  相似文献   
212.
Phytoplankton diversity and abundance in estuarine systems are controlled by many factors. Salinity, turbidity, and inorganic nutrient concentrations and their respective ratios have all been proposed as principal factors that structure phytoplankton diversity and influence the emergence of potentially toxic species. Although much work has been conducted on temperate estuaries, less is known about how phytoplankton diversity is controlled in tropical, monsoonal systems that are subject to large, seasonal shifts in hydrology and to rapidly changing land use. Here, we present the results of an investigation into the factors controlling phytoplankton species composition and distribution in a tropical, monsoonal estuary (Bach Dang estuary, North Vietnam). A total of 245 taxa, 89 genera from six algal divisions were observed. Bacillariophyceae were the most diverse group contributing to 51.4 % of the microalgal assemblage, followed by Dinophyceae (29.8 %), Chlorophyceae (10.2 %), Cyanophyceae (3.7 %), Euglenophyceae (3.7 %) and Dictyochophyceae (1.2 %). The phytoplankton community was structured by inorganic nutrient ratios (DSi:DIP and DIN:DIP) as well as by salinity and turbidity. Evidence of a decrease in phytoplankton diversity concomitant with an increase in abundance and dominance of certain species (e.g., Skeletonema costatum) and the appearance of some potentially toxic species over the last two decades was also found. These changes in phytoplankton diversity are probably due to a combination of land use change resulting in changes in nutrient ratios and concentrations and global change as both rainfall and temperature have increased over the last two decades. It is therefore probable in the future that phytoplankton diversity will continue to change, potentially favoring the emergence of toxic species in this system.  相似文献   
213.
This paper presents simulations of climate change impacts on water quality in the upstream portion of the Cau River Basin in the North of Vietnam. The integrated modeling system GIBSI was used to simulate hydrological processes, pollutant and sediment wash-off in the river basin, and pollutant transport and transformation in the river network. Three projections for climate change based on emission scenarios B1, B2, and A2 of IPCC Special Report on Emission Scenarios (SRES) were considered. By assuming that the input pollution sources and watershed configuration were constant, based on 2008 data, water quality in the river network was simulated up to the terminal year 2050. For each climate change scenario, patterns of precipitation in wet and dry year were considered. The change in annual and monthly trends for dissolved oxygen (DO), biochemical oxygen demand (BOD), and ammonium ions (NH4+) load and concentration for different portions of the watershed have been analyzed. The results of these simulations show that climate change has more impact on changing the seasonal water quality parameters than on altering the average annual load of the pollutants. The percent change and change pattern in water quality parameters are different for wet and dry year, and the changes in wet year are smaller than those in dry year.  相似文献   
214.
The remediation of per‐ and polyfluoroalkyl substances by injection of colloidal activated carbon (CAC) at a contaminated site in Central Canada was evaluated using various visualization and modeling methods. Radial diagrams were used to illustrate spatial and temporal trends in perfluoroalkyl acid (PFAA) concentrations, as well as various redox indicators. To assess the CAC adsorption capacity for perfluorooctane sulfonate (PFOS), laboratory Freundlich isotherms were derived for PFOS mixed with CAC in two solutions: (1) PFOS in a pH 7.5 synthetic water that was buffered by 1 millimolar NaHCO3 (Kf = 142,800 mg1‐a La/kg and = 0.59); and (2) a groundwater sample (pH = 7.4) containing PFOS among other PFAS from a former fire‐training area in the United States (Kf = 4,900 mg1‐a La/kg and a = 0.24). A mass balance approach was derived to facilitate the numerical modeling of mass redistribution after CAC injection, when mass transitions from a two‐phase system (aqueous and sorbed to organic matter) to a three‐phase system that also includes mass sorbed to CAC. An equilibrium mixing model of mass accumulation over time was developed using a finite‐difference solution and was verified by intermodel comparison for prediction of CAC longevity in the center of a source area. A three‐dimensional reactive transport model (ISR‐MT3DMS) was used to indicate that the CAC remedy implemented at the site is likely to be effective for PFOS remediation for decades. Model results are used to recommend remedial design and monitoring alternatives that account for the uncertainty in long‐term performance predictions.  相似文献   
215.

Introduction

This study of photocatalytic degradation of wastewater was carried out in alveolar cell ??-SiC foam-structured photocatalytic reactors working in a recirculation mode. The immobilization of TiO2 on ??-SiC foams was efficiently obtained through a sol?Cgel technique in acidic conditions.

Discussion

In order to optimize degradation yields obtained by the foam-structured prototype reactor for the photocatalytic water treatment, the operating conditions of the photoreactor have been investigated and the efficiency of the process was evaluated by measuring the photocatalytic degradation of Diuron (3-(3,4-dichlorophenyl)-1,1-dimethyl-urea)) under UV irradiation. Kinetic studies were carried out by investigating the influence of different parameters controlling the reaction (TiO2 loading and ??-SiC foam cell size). The ageing of TiO2/??-SiC foam photocatalytic materials and the mineralization (TOC, Cl?, NO3? and NH4+) of Diuron were investigated.  相似文献   
216.
Journal of Material Cycles and Waste Management - E-waste is becoming a concern due to its toxic content and serious pollution effect. Many studies have focused on the detrimental impacts of...  相似文献   
217.
The excessive use of antimicrobials in animal rearing and the associated environmental hazards have become a pressing issue. Animal agriculture is often viewed as a significant contributor to environmental degradation due to the residues of antimicrobials. It is a common practice to use livestock waste as a soil enhancer in farming. Despite some research into antimicrobials, there is room for more comprehensive data regarding these pollutants in animal farming environments. A handful of earlier studies have identified antimicrobials in animal waste. This research undertook the task of examining and evaluating soils amended with animal waste (from chickens, cows, and pigs) for the presence of seven specific antimicrobials. The antimicrobials under scrutiny included trimethoprim (TRI), ormethoprim (ORM), ofloxacin (OFL), norfloxacin (NOR), tetracycline (TET), chlortetracycline (CTE), and tylosin (TLS). Soil samples were collected from areas surrounding breeding farms located upstream of the Sai Gon River. These samples were then subjected to laboratory analysis, which involved solid-phase extraction using ultrasonic waves and the application of high-performance liquid chromatography-tandem mass spectrometry (LCMS/MS) to identify the antimicrobials. TRI, which had the highest average concentration (2.603–91.304 μg/kg), and OFL, with the second highest average concentration (1.815–15.832 μg/kg), were detected in all soil samples amended with manure. CTE, with the third highest average concentration, was found in soils amended with cow and pig waste (1.625–15.486 μg/kg). ORM and TE, with lower average concentrations (0.595–1.318 μ and 11.537–13.569 μg/kg, respectively), were only detected in soils amended with chicken waste, while NOR was only found in soils amended with cow waste. These findings indicate that the use of antimicrobials in animal farming can negatively impact the soil ecosystem. Consequently, these results can contribute to the creation of guidelines for monitoring antimicrobial residues in agricultural ecosystems.  相似文献   
218.
Russian Journal of Ecology - For the first time, the density of fish population has been quantitatively assessed in the Mekong River delta in the territory of the Socialist Republic of Vietnam. The...  相似文献   
219.
The Mekong River delta is one of the largest agricultural land in the Southeast Asia. It plays a very important role for agriculture and fisheries in South Vietnam. However, comprehensive studies on the environmental pollution of persistent organic pollutants (POPs) in Mekong River delta have not been carried out in recent years. In this study, we collected sediment samples from the Mekong River to evaluate the contamination and ecological risks caused by several POPs. The contamination pattern of POPs was DDT>PCBs>CHLs>HCHs>HCB. DDTs are the most abundant pollutants, their concentration ranging from 0.01 to 110 ng/g dry wt, followed by PCBs (0.039-9.2 ng/g dry wt). DDTs and PCBs concentrations were higher in sediment from adjacent to urban areas than those from rural and agricultural sites, suggesting urban areas as important point sources of DDTs and PCBs to the river. Ratio of p,p'-DDT/p,p'-DDE was lower compared to those previously reported. However, some samples still had the ratio higher than 0.5, indicating recent input of DDT into the aquatic environments. This result shows that although the magnitude of contamination decreased over time, recent inputs of DDTs to the river still occur. Some sediment samples had concentrations of DDT compounds higher than the standards from the Canadian Environmental Quality Guideline, suggesting continuous monitoring for POPs contamination in the Mekong River is necessary.  相似文献   
220.
Environmental Science and Pollution Research - Lack of vibrations on fresh concrete negatively influences the compaction and thus the quality of concrete. This is particularly concerning with...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号