首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   399篇
  免费   3篇
  国内免费   8篇
安全科学   13篇
废物处理   18篇
环保管理   34篇
综合类   82篇
基础理论   72篇
污染及防治   138篇
评价与监测   38篇
社会与环境   13篇
灾害及防治   2篇
  2023年   4篇
  2022年   11篇
  2021年   10篇
  2020年   2篇
  2019年   6篇
  2018年   7篇
  2017年   6篇
  2016年   24篇
  2015年   12篇
  2014年   23篇
  2013年   30篇
  2012年   24篇
  2011年   30篇
  2010年   30篇
  2009年   21篇
  2008年   24篇
  2007年   24篇
  2006年   26篇
  2005年   23篇
  2004年   25篇
  2003年   7篇
  2002年   7篇
  2001年   2篇
  2000年   3篇
  1999年   6篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1990年   1篇
  1988年   1篇
  1987年   2篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1977年   1篇
  1975年   1篇
  1965年   1篇
  1964年   1篇
排序方式: 共有410条查询结果,搜索用时 15 毫秒
171.
With a growing awareness of water pollution problems, in recent years there has been a considerable increased effort in developing and applying numerical models to predict accurately the contaminant distributions, particularly in free surface flows. This numerical study presents a predictive hydrodynamic model in order to explore the dispersion phenomenon of a pollutant injected from time-dependent sources in a turbulent free surface flow. More precisely, we study the impact of pulsation on the dispersion of an injected material. The air/water interface was modeled with the volume of fluid method and sharpness of the free surface was assured by means of Geo-Reconstruct scheme. The numerical results showed that the pulsation played a dominant role at the early stage of the pollutant transport. It was also observed that the pulsation affected the distribution of the injected material especially near the front and that a major swirling action was developed compared to the constant-rate-injection case.  相似文献   
172.
In spring 2011, an unprecedented flood hit the complex eastern United States (U.S.)–Canada transboundary Lake Champlain–Richelieu River (LCRR) Basin, destructing properties and inducing negative impacts on agriculture and fish habitats. The damages, covered by the Governments of Canada and the U.S., were estimated to C$90M. This natural disaster motivated the study of mitigation measures to prevent such disasters from reoccurring. When evaluating flood risks, long‐term evolving climate change should be taken into account to adopt mitigation measures that will remain relevant in the future. To assess the impacts of climate change on flood risks of the LCRR basin, three bias‐corrected multi‐resolution ensembles of climate projections for two greenhouse gas concentration scenarios were used to force a state‐of‐the‐art, high‐resolution, distributed hydrological model. The analysis of the hydrological simulations indicates that the 20‐year return period flood (corresponding to a medium flood) should decrease between 8% and 35% for the end of the 21st Century (2070–2099) time horizon and for the high‐emission scenario representative concentration pathway (RCP) 8.5. The reduction in flood risks is explained by a decrease in snow accumulation and an increase in evapotranspiration expected with the future warming of the region. Nevertheless, due to the large climate inter‐annual variability, short‐term flood probabilities should remain similar to those experienced in the recent past.  相似文献   
173.
Row crops like vineyards undergo various and significant manipulations of training system and cultural practices, which strongly influence the quality of products. Variations of water vapour fluxes from the soil surface and the leaves in the row volume are closely linked to the ratio of energy available to each compartment. A physically realistic model of available energy partition between the rows and the soil surface is therefore a key factor towards optimization of such systems, and must be included in canopy models. A number of available models were not directly validated. The purpose of the study was therefore to design a model of net radiation partition and check it directly.The model of net radiation partition between rows (Rnv), considered as a whole, and intervening soil surface (Rns) of a row-crop canopy was developed from physically realistic yet simple assumptions:
-
global solar (short wave) radiation partition was calculated by a previously validated geometric model;
-
long-wave radiative fluxes between the soil surface, the rows and the atmosphere were calculated from the corresponding view factors, which only depended on canopy geometry;
-
atmospheric radiation was estimated by a simple empirical relation based on air temperature as the only input variable;
-
air temperature in the vicinity of leaves replaced leaf surface temperatures as a more convenient input variable, with little loss of information.
The input variables were incoming direct and diffuse solar radiation, soil surface mean temperature and air temperature near the leaves. The main parameters were soil and leaf albedos, row porosity and dimensions.A direct validation of the model was attempted by measuring net radiation above the canopy and at five positions above the soil surface in a vineyard of the Bordeaux area. The reliability of soil surface net radiation measurements was estimated by thorough error propagation analysis. When found significant, errors were corrected and finally soil surface net radiation data were corrected only for delay in direct downward solar radiation striking net radiometers, because canopy was discontinuous and height of net radiometers was not negligible compared to canopy height.In these conditions, model calculations were in agreement with measurements, although the model slightly underestimated Rns and therefore overestimated Rnv. As the mean error was about 20 W m−2, and therefore compatible with instrument accuracy, the results were considered satisfactory.This available energy partition model is able to estimate radiative balance in various canopy systems and in various thermal environment conditions, leading to easier simulations of energy balance and water fluxes. It could therefore be a useful tool for optimizing row-crop canopies, taking fully into account any kind of present or future thermal environment.  相似文献   
174.
Badges of status, usually color patches, are hypothesized to serve as important signals within natural populations by communicating an individual’s fighting ability or aggressiveness before an interaction ever takes place. These signals, which may evolve via sexual and/or social selection, mediate intra-specific competition by influencing the outcome or escalation of contests between individuals. The last 10 years saw the rise of interest in the role of ultraviolet (UV)-based coloration in intra-sexual communication. However, the rare experimental studies that tested this hypothesis found opposite results, which may originate from the different methodological procedures used to assess the badge of status theory. We present here the results of an experiment testing whether male blue tits (Cyanistes caeruleus) respond differently to unfamiliar conspecifics presenting contrasted UV crest coloration. In an aviary, we simultaneously presented two caged blue tits with enhanced (UV+) or reduced (UV−) crest coloration to a focal bird. We found that focal males acted more aggressively towards the UV− males than UV+ males. In addition, focal males fed more often close to males that were similar in brightness or duller than themselves. We conclude that, in blue tits, UV blue crest coloration affects both social and aggressive responses towards unfamiliar individuals, and thus it has some properties of a badge of status.  相似文献   
175.
Global efforts to deliver internationally agreed goals to reduce carbon emissions, halt biodiversity loss, and retain essential ecosystem services have been poorly integrated. These goals rely in part on preserving natural (e.g., native, largely unmodified) and seminatural (e.g., low intensity or sustainable human use) forests, woodlands, and grasslands. To show how to unify these goals, we empirically derived spatially explicit, quantitative, area-based targets for the retention of natural and seminatural (e.g., native) terrestrial vegetation worldwide. We used a 250-m-resolution map of natural and seminatural vegetation cover and, from this, selected areas identified under different international agreements as being important for achieving global biodiversity, carbon, soil, and water targets. At least 67 million km2 of Earth's terrestrial vegetation (∼79% of the area of vegetation remaining) required retention to contribute to biodiversity, climate, soil, and freshwater conservation objectives under 4 United Nations’ resolutions. This equates to retaining natural and seminatural vegetation across at least 50% of the total terrestrial (excluding Antarctica) surface of Earth. Retention efforts could contribute to multiple goals simultaneously, especially where natural and seminatural vegetation can be managed to achieve cobenefits for biodiversity, carbon storage, and ecosystem service provision. Such management can and should co-occur and be driven by people who live in and rely on places where natural and sustainably managed vegetation remains in situ and must be complemented by restoration and appropriate management of more human-modified environments if global goals are to be realized.  相似文献   
176.
177.
This paper describes the experiences and lessons learned in applying a multi-agent systems (MAS) model to study the dynamics and complex interactions among stakeholders in the management of community-based forests. The MAS model is developed using the companion modelling (ComMod) approach, which allows for a collaborative development of the model between the stakeholders and researchers. This approach involves the development and application of role-playing games (RPGs) and computer simulation as learning tools and to validate the model. Inferences are drawn from the learning and negotiation processes that the stakeholders and researchers underwent in the collaborative development of the MAS model. These processes ultimately led to the development of a collaborative resource management plan. The approach and the MAS model were applied to a case study involving a community-based forest managed by three villages in the island of Palawan, Philippines.  相似文献   
178.
The objective of this research work is the evaluation of the impact of landuse pattern and intensity on landscape by means of an indicator. The method used to calculate a ‘landscape indicator’ (Iland) allows to take into account the objective as well as the subjective approach of landscape. Iland corresponds to the degree of agreement between landscape supply by farmers and landscape demand by the social groups. The supply and the demand are evaluated through four criteria: ‘diversity’, ‘upkeep’, ‘openness’ and ‘heritage’. The landscape supply is calculated from data of landscape objects (punctual, linear and spatial) for each criterion recorded at the field level. The values of the four criteria for the landscape demand are allocated by the user(s) of the indicator (decision makers, regional council, social groups…) into five classes (0–4). The value of the landscape indicator is the least favourable difference between supply and demand for the four criteria. An example of calculation of the ‘landscape indicator’ for an arable farm is given. The collection of data needs 2 h with the farmer and 2 h for a survey of the farm land.  相似文献   
179.
Single-phase and two-phase digestion of fruit and vegetable waste were studied to compare reactor start-up, reactor stability and performance (methane yield, volatile solids reduction and energy yield). The single-phase reactor (SPR) was a conventional reactor operated at a low loading rate (maximum of 3.5 kg VS/m3 d), while the two-phase system consisted of an acidification reactor (TPAR) and a methanogenic reactor (TPMR). The TPAR was inoculated with methanogenic sludge similar to the SPR, but was operated with step-wise increase in the loading rate and with total recirculation of reactor solids to convert it into acidification sludge. Before each feeding, part of the sludge from TPAR was centrifuged, the centrifuge liquid (solubilized products) was fed to the TPMR and centrifuged solids were recycled back to the reactor. Single-phase digestion produced a methane yield of 0.45 m3 CH4/kg VS fed and VS removal of 83%. The TPAR shifted to acidification mode at an OLR of 10.0 kg VS/m3 d and then achieved stable performance at 7.0 kg VS/m3 d and pH 5.5–6.2, with very high substrate solubilization rate and a methane yield of 0.30 m3 CH4/kg COD fed. The two-phase process was capable of high VS reduction, but material and energy balance showed that the single-phase process was superior in terms of volumetric methane production and energy yield by 33%. The lower energy yield of the two-phase system was due to the loss of energy during hydrolysis in the TPAR and the deficit in methane production in the TPMR attributed to COD loss due to biomass synthesis and adsorption of hard COD onto the flocs. These results including the complicated operational procedure of the two-phase process and the economic factors suggested that the single-phase process could be the preferred system for FVW.  相似文献   
180.
Leaching of sludge-borne trace elements has been observed in experimental and field studies. The role of microbial processes in the mobilization of trace elements from wastewater sludge is poorly defined. Our objectives were to determine trace element mobilization from sludge subjected to treatments representing microbial acidification, direct chemical acidification and no acidification, and to determine the readsorption potential of mobilized elements using calcareous sand. Triplicate columns (10-cm diameter) for incubation and leaching of sludge had a top layer of digested dewatered sludge (either untreated, acidified with H2SO4, or limed with CaCO3; all mixed with glass beads to prevent ponding) and a lower glass bead support bed. Glass beads in the sludge layer, support layer or both were replaced by calcareous sand in four treatments used for testing the readsorption potential of mobilized elements. Eight sequential 8-day incubation and leaching cycles were operated, each consisting of 7.6 d of incubation at 28 degrees C followed by 8 h of leaching with synthetic acid rain applied at 0.25 cm/h. Leachates were analyzed for trace elements, nitrate and pH, and sludge layer microbial respiration was measured. The largest trace element, nitrate and S losses occurred in treatments with the greatest pH depression and greatest microbial respiration rates. Cumulative leaching losses from both microbial acidification and direct acidification treatments were > 90% of Zn and 64-80% of Cu and Ni. Preventing acidification with sludge layer lime or sand restricted leaching for all trace elements except Mo. Results suggested that the primary microbial role in the rapid leaching of trace elements was acidification, with results from direct acidification being nearly identical to microbial acidification. Microbial activity in the presence of materials that prevented acidification mobilized far lower concentrations of trace elements, with the exception of Mo. Trace elements mobilized by acidification were readsorbed by calcareous sand when present.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号