首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   291篇
  免费   2篇
  国内免费   6篇
安全科学   20篇
废物处理   28篇
环保管理   27篇
综合类   27篇
基础理论   43篇
污染及防治   80篇
评价与监测   58篇
社会与环境   13篇
灾害及防治   3篇
  2023年   5篇
  2022年   33篇
  2021年   27篇
  2020年   7篇
  2019年   10篇
  2018年   16篇
  2017年   24篇
  2016年   24篇
  2015年   9篇
  2014年   13篇
  2013年   37篇
  2012年   24篇
  2011年   18篇
  2010年   3篇
  2009年   10篇
  2008年   6篇
  2007年   4篇
  2006年   9篇
  2005年   4篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   4篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1983年   2篇
排序方式: 共有299条查询结果,搜索用时 234 毫秒
71.
72.
The aim of this study is the treatment of Basic Red 29 (BR29) dye solution using hybrid iron-aluminum electrodes by electrocoagulation and electro-Fenton methods. The effect of current density, initial pH, supporting electrolyte, H2O2, and initial dye concentration on dye removal efficiency was investigated, and the best experimental conditions were obtained. Time-coarse variation of UV-Vis spectra and toxicity and chemical oxygen demand (COD) removal were also examined at the best experimental conditions. Both systems were found very successful for the removal of BR29 dye. The removal efficiency of >95 % for BR29 dye solution was reached easily in a short time. At the best experimental conditions, for the initial BR29 concentration of 100 mg/L, >95 % BR29 dye and 71.43 % COD removal were obtained after 20 and 40 min of electrolysis, respectively. Additionally, toxicity results for electro-Fenton treatment of 100 mg/L BR29 were also very promising. According to the results obtained, although electro-Fenton is more effective, both systems can be used successfully to treat textile wastewater including dyes.  相似文献   
73.
74.
The use of cyclic experiments, where the product of one reaction becomes the starting material for the next experiment, was proposed as an effective protocol for waste minimization in an educational lab. A simple, cheap and pollution-free method was developed for recovering silver as nano-silver colloidal dispersion from waste silver chloride in the laboratories of the Faculty of Health, Safety and Environment. Silver nanoparticles of the size 5–18 nm were recovered in the presence of sodium borohydride as a reducing agent and polyvinylpyrrolidone as a stabilizer agent. The nano-silver particles were studied for their formation, structure, stability and size using UV–Vis spectroscopy, transmission electron microscopy and dynamic light scattering techniques. The antibacterial assays of nanoparticles showed satisfactory results for Escherichia coli ATCC25922, Staphylococcus aureus ATCC 29213, and Acinetobacter baumanii (Clinical isolate). A laboratory experiment was designed in which students synthesize yellow colloidal silver solution from chemical waste silver chloride and estimate particle size using visible spectroscopy.  相似文献   
75.
ABSTRACT A rill-interrill erosion model was applied to a mined and reclaimed area. Soil loss from the interrill areas was estimated by the Universal Soil Loss Equation (USLE). The model considers the fate and ultimate disposition of the sediment from interrill areas along with the fate and destination of soil materials detached by the rill flow. The net sediment loss was predicted by comparing, for a given flow, the amounts of eroded soil to rill transport capacity. When applied to a selected stripmined and reclaimed site the model displayed the location of contributing areas and the amount of erosion and deposition. The predicted areal distribution of erosion and deposition was compared to measured data. Agreement between the predicted and measured values was within 25 percent.  相似文献   
76.
Hyrcanian forests of North of Iran are of great importance in terms of various economic and environmental aspects. In this study, Spot-6 satellite images and regression models were applied to estimate above-ground biomass in these forests. This research was carried out in six compartments in three climatic (semi-arid to humid) types and two altitude classes. In the first step, ground sampling methods at the compartment level were used to estimate aboveground biomass (Mg/ha). Then, by reviewing the results of other studies, the most appropriate vegetation indices were selected. In this study, three indices of NDVI, RVI, and TVI were calculated. We investigated the relationship between the vegetation indices and aboveground biomass measured at sample-plot level. Based on the results, the relationship between aboveground biomass values and vegetation indices was a linear regression with the highest level of significance for NDVI in all compartments. Since at the compartment level the correlation coefficient between NDVI and aboveground biomass was the highest, NDVI was used for mapping aboveground biomass. According to the results of this study, biomass values were highly different in various climatic and altitudinal classes with the highest biomass value observed in humid climate and high-altitude class.  相似文献   
77.
Prediction of groundwater depth and elevation is important in quantitative water management especially in arid areas. There are several basins in southwest of Iran, in Zagross Mountain, in which the water wells are distributed along a narrow elliptic ring band around the region. To find the most applicable interpolation method, both of the groundwater depth and elevation are predicted by different kriging methods. It is found that the groundwater elevation and depth can be predicted by different methods. Furthermore, it is found that the methods in which the trend is eliminated predicted the groundwater elevation and depth in central part of the region is with less standard error. Furthermore, the methods with no trend elimination, predicted the groundwater depths with less error near the water wells. Dividing the area to hydro-geologically homogeneous sub-areas improved the interpolation precision.  相似文献   
78.
79.
In this paper, a new methodology is developed to handle parameter and input uncertainties in water and waste load allocation (WWLA) in rivers by using factorial interval optimization and the Soil, Water, Atmosphere, and Plant (SWAP) simulation model. A fractional factorial analysis is utilized to provide detailed effects of uncertain parameters and their interaction on the optimization model outputs. The number of required optimizations in a fractional factorial analysis can be much less than a complete sensitivity analysis. The most important uncertain inputs and parameters can be also selected using a fractional factorial analysis. The uncertainty of the selected inputs and parameters should be incorporated real time water and waste load allocation. The proposed methodology utilizes the SWAP simulation model to estimate the quantity and quality of each agricultural return flow based on the allocated water quantity and quality. In order to control the pollution loads of agricultural dischargers, it is assumed that a part of their return flows can be diverted to evaporation ponds. Results of applying the methodology to the Dez River system in the southwestern part of Iran show its effectiveness and applicability for simultaneous water and waste load allocation in rivers. It is shown that in our case study, the number of required optimizations in the fractional factorial analysis can be reduced from 64 to 16. Analysis of the interactive effects of uncertainties indicates that in a low flow condition, the upstream water quality would have a significant effect on the total benefit of the system.  相似文献   
80.
We are introducing graphene oxide modified with amine groups as a new solid phase for extraction of heavy metal ions including cadmium(II), copper(II), nickel(II), zinc(II), and lead(II). Effects of pH value, flow rates, type, concentration, and volume of the eluent, breakthrough volume, and the effect of potentially interfering ions were studied. Under optimized conditions, the extraction efficiency is >97 %, the limit of detections are 0.03, 0.05, 0.2, 0.1, and 1 μg L?1 for the ions of cadmium, copper, nickel, zinc, and lead, respectively, and the adsorption capacities for these ions are 178, 142, 110, 125, and 210 mg g?1. The amino-functionalized graphene oxide was characterized by thermogravimetric analysis, transmission electron microscopy, scanning electron microscopy, and Fourier transform infrared spectrometry. The proposed method was successfully applied in the analysis of environmental water and food samples. Good spiked recoveries over the range of 95.8–100.0 % were obtained. This work not only proposes a useful method for sample preconcentration but also reveals the great potential of modified graphene as an excellent sorbent material in analytical processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号