全文获取类型
收费全文 | 470篇 |
免费 | 2篇 |
国内免费 | 7篇 |
专业分类
安全科学 | 16篇 |
废物处理 | 31篇 |
环保管理 | 64篇 |
综合类 | 43篇 |
基础理论 | 72篇 |
环境理论 | 1篇 |
污染及防治 | 159篇 |
评价与监测 | 75篇 |
社会与环境 | 17篇 |
灾害及防治 | 1篇 |
出版年
2023年 | 8篇 |
2022年 | 35篇 |
2021年 | 18篇 |
2020年 | 4篇 |
2019年 | 8篇 |
2018年 | 10篇 |
2017年 | 13篇 |
2016年 | 12篇 |
2015年 | 11篇 |
2014年 | 28篇 |
2013年 | 60篇 |
2012年 | 27篇 |
2011年 | 20篇 |
2010年 | 19篇 |
2009年 | 15篇 |
2008年 | 21篇 |
2007年 | 25篇 |
2006年 | 19篇 |
2005年 | 23篇 |
2004年 | 14篇 |
2003年 | 9篇 |
2002年 | 9篇 |
2001年 | 4篇 |
2000年 | 2篇 |
1999年 | 4篇 |
1998年 | 5篇 |
1997年 | 3篇 |
1996年 | 3篇 |
1994年 | 3篇 |
1992年 | 2篇 |
1988年 | 2篇 |
1987年 | 2篇 |
1984年 | 2篇 |
1982年 | 4篇 |
1981年 | 2篇 |
1980年 | 2篇 |
1979年 | 3篇 |
1973年 | 1篇 |
1972年 | 2篇 |
1968年 | 1篇 |
1967年 | 2篇 |
1966年 | 1篇 |
1965年 | 1篇 |
1964年 | 2篇 |
1963年 | 1篇 |
1962年 | 2篇 |
1959年 | 2篇 |
1958年 | 1篇 |
1956年 | 2篇 |
1955年 | 2篇 |
排序方式: 共有479条查询结果,搜索用时 0 毫秒
31.
Lead tolerance and physiological adaptation mechanism in roots of accumulating and non-accumulating ecotypes of Sedum alfredii 总被引:1,自引:0,他引:1
Huang H Gupta DK Tian S Yang XE Li T 《Environmental science and pollution research international》2012,19(5):1640-1651
Background, aim and scope
Lead (Pb) accumulation in soils affects plants primarily through their root systems. The aim of this study was to investigate early symptoms of the loss of membrane integrity and lipid peroxidation in root tissues and physiological adaptation mechanism to Pb in accumulating ecotypes (AE) and non-accumulating ecotypes (NAE) of Sedum alfredii under Pb stress in hydroponics.Methods and results
Histochemical in situ analyses, fluorescence imaging, and normal physiological analysis were used in this study. Pb accumulation in roots of both AE and NAE increased linearly with increasing Pb levels (0?C200???M), and a significant difference between both ecotypes was noted. Both loss of plasma membrane integrity and lipid peroxidation in root tissues became serious with increasing Pb levels, maximum tolerable Pb level was 25 and 100???M for NAE and AE, respectively. Pb supplied at a toxic level caused a burst of reactive oxygen species (ROS) in root cells in both ecotypes. However, the root cells of AE had inherently higher activities of superoxide dismutase (SOD), guaiacol peroxidase (POD), and lipoxygenase (LOX) in control plants, and the induction response of these antioxidant enzymes occurred at lower Pb level in AE than NAE. AE plants maintained higher ascorbic acid and H2O2 concentrations in root cells than NAE when exposed to different Pb levels, and Pb induced more increase in dehydroascorbate (DHA), catalase (CAT), and ascorbate peroxidase (APX) in AE than NAE roots.Discussion and conclusion
Results indicate that histochemical in situ analyses of root cell death and lipid peroxidation under Pb short-term stress was sensitive, reliable, and fast. Higher tolerance in roots of accumulating ecotype under Pb stress did depend on effective free oxygen scavenging by making complex function of both constitutively higher activities and sensitive induction of key antioxidant enzymes in root cells of S. alfredii. 相似文献32.
Saini M Taggart MA Knopp D Upreti S Swarup D Das A Gupta PK Niessner R Prakash V Mateo R Cuthbert RJ 《Environmental pollution (Barking, Essex : 1987)》2012,160(1):11-16
Diclofenac, a non-steroidal anti-inflammatory drug (NSAID), has caused catastrophic vulture declines across the Indian sub-continent. Here, an indirect ELISA is used to detect and quantify diclofenac in 1251 liver samples from livestock carcasses collected across India between August 2007 and June 2008, one to two years after a ban on diclofenac manufacture and distribution for veterinary use was implemented. The ELISAs applicability was authenticated with independent data obtained using LC-ESI/MS. Of 1251 samples, 1150 (91.9%) were negative for diclofenac using both methods, and 60 (4.8%) were positive at 10-4348 and 10-4441 μg kg(-1) when analysed by ELISA and LC-ESI/MS, respectively. The residue level relationship in the 60 positive samples was highly significant (p < 0.001, r(2) = 0.644). Data suggest that this immunological assay could be used not only for cost effective sample screening, but also for residue level semi-quantification. 相似文献
33.
Agarwal R Lata S Gupta M Singh P 《Journal of environmental biology / Academy of Environmental Biology, India》2010,31(4):521-528
Effluent originating from distilleries contain large amount of dark brown coloured wastewater called molasses spent wash (MSW). This MSW is the unwanted residual liquid waste to dispose because of low pH, high temperature, dark brown colour, high ash content, unpleasant odour and high percentage of organic and inorganic matter. Dark brown colour of MSW is due to the presence of melanoidin pigment. It reduces sunlight penetration in rivers and lakes which in turn decrease both photosynthetic activity and dissolved oxygen concentration affecting aquatic life. So the disposal of this effluent is one of the critical environmental issues. A number of treatment processes have been employed for the distillery waste management. This review paper present an overview of the pollution problems caused by melanoidin and the technologies employed globally for its removal. 相似文献
34.
Tripathi RD Dwivedi S Shukla MK Mishra S Srivastava S Singh R Rai UN Gupta DK 《Chemosphere》2008,70(10):1919-1929
Rice is a major food crop throughout the world; however, accumulation of toxic metals and metalloids in grains in contaminated environments is a matter of growing concern. Field experiments were conducted to analyze the growth performance, elemental composition (Fe, Si, Zn, Mn, Cu, Ni, Cd and As) and yield of the rice plants (Oryza sativa L. cv. Saryu-52) grown under different doses of fly-ash (FA; applied @ 10 and 100 tha(-1) denoted as FA(10) and FA(100), respectively) mixed with garden soil (GS) in combination with nitrogen fertilizer (NF; applied @ 90 and 120 kg ha(-1) denoted as NF(90) and NF(120), respectively) and blue green algae biofertilizer (BGA; applied @ 12.5 kg ha(-1) denoted as BGA(12.5)). Significant enhancement of growth was observed in the plants growing on amended soils as compared to GS and best response was obtained in amendment of FA(10)+NF(90)+BGA(12.5). Accumulation of Si, Fe, Zn and Mn was higher than Cu, Cd, Ni and As. Arsenic accumulation was detected only in FA(100) and its amendments. Inoculation of BGA(12.5) caused slight reduction in Cd, Ni and As content of plants as compared to NF(120) amendment. The high levels of stress inducible non-protein thiols (NP-SH) and cysteine in FA(100) were decreased by application of NF and BGA indicating stress amelioration. Study suggests integrated use of FA, BGA and NF for improved growth, yield and mineral composition of the rice plants besides reducing the high demand of nitrogen fertilizers. 相似文献
35.
Ports can generate large quantity of pollutants in the atmosphere due to various activities like loading and unloading,transportation, and construction operations. Determination of the character and quantity of emissions from individual sources is an essential step in any project to control and minimize the emissions.In this study a detailed emission inventory of total suspendedparticulate matter (TSP), particulate matter less than 10 m(PM10), sulfur dioxide (SO2) and nitrogen oxides (NOx) for a port and harbour project near Mumbai is compiled. Results show that the total annual average contributions of TSP and PM10 from all the port activitieswere 872 and 221 t yr-1, respectively. Annual average emissions of gaseous pollutants SO2 and NOxwere 56 and 397 t yr-1, respectively, calculatedby using emission factors for different port activities. The maximum TSP emission (419 t yr -1) was from paved roads, while the least (0.4 t yr-1) was from bulk handling activity. The maximum PM10 emission (123 t yr-1) was from unpaved roads and minimum (0.2 t yr-1) from bulk handling operations. Similarly the ratio of TSP and PM10 emission was highest (5.18) from paved roads and least (2.17) from bulk handling operations. Regression relation was derivedfrom existing emission data of TSP and PM10 from variousport activities. Good correlation was observed between TSP andPM10 having regression coefficient >0.8. 相似文献
36.
Sediment and phosphorus (P) transport from the Minnesota River Basin to Lake Pepin on the upper Mississippi River has garnered much attention in recent years. However, there is lack of data on the extent of sediment and P contributions from riverbanks vis-à-vis uplands and ravines. Using two light detection and ranging (lidar) data sets taken in 2005 and 2009, a study was undertaken to quantify sediment and associated P losses from riverbanks in Blue Earth County, Minnesota. Volume change in river valleys as a result of bank erosion amounted to 1.71 million m over 4 yr. Volume change closely followed the trend: the Blue Earth River > the Minnesota River at the county's northern edge > the Le Sueur River > the Maple River > the Watonwan River > the Big Cobb River > Perch Creek > Little Cobb River. Using fine sediment content (silt + clay) and bulk density of 37 bank samples representing three parent materials, we estimate bank erosion contributions of 48 to 79% of the measured total suspended solids at the mouth of the Blue Earth and the Le Sueur rivers. Corresponding soluble P and total P contributions ranged from 0.13 to 0.20% and 40 to 49%, respectively. Although tall banks (>3 m high) accounted for 33% of the total length and 63% of the total area, they accounted for 75% of the volume change in river valleys. We conclude that multitemporal lidar data sets are useful in estimating bank erosion and associated P contributions over large scales, and for riverbanks that are not readily accessible for conventional surveying equipment. 相似文献
37.
R. P. Yadav B. Gupta P. L. Bhutia J. K. Bisht A. Pattanayak V. S. Meena 《国际发展与全球生态学杂志》2019,26(5):460-470
Adoption of agroforestry is paramount as a climate change mitigation and adaptation strategy. The assessment of plant biomass is crucial for understanding the vulnerability of biological systems to climate change. In the present study, agroforestry systems viz., agrisilviculture (AS), agrihorticulture (AH), agrihortisilviculture (AHS) and agrisilvihorticulture (ASH) were investigated for biomass production and carbon stock in vegetation as well as in soil in the Indian central Himalaya along the elevation i.e. E1 (<1100 m), E2 (1100–1400 m), E3 (1400–1700 m), E4 (1700–2000 m) and E5 (>2000 m). Mean aboveground and belowground biomass were 73.9% and 26.1%, respectively, of total biomass (64.4 t ha?1) in agroforestry systems. Fodder and/or timber trees accounted for 31% (in AHS) to 74% (in AS) of total biomass, while fruit trees accounted for 18% (in ASH) to 73% (in AH) of total biomass. The contribution of agriculture crops to total biomass fluctuated between 19% (in ASH) and 26% (in AH). Total vegetation biomass, soil carbon and total carbon density in agroforestry systems increased significantly along the elevation, with maximum biomass at elevation E5 (32.0 t ha?1, 64.7 t C ha?1 and 96.7 t C ha?1). Total biomass of vegetation among agroforestry systems differed significantly. Soil carbon stock was highest in AHS (59.5 t C ha?1) and total carbon density (vegetation + soil) was highest in ASH (93.0 t C ha?1). Thus, in Indian Himalayas, vegetation biomass, carbon stock, soil and total carbon (vegetation + soil) stock increased along the elevation.
Abbrviations: AG: aboveground; BG: belowground; WD: wood density; VOB: volume over bark; BEF: biomass expansion factor; AS: agrisilviculture; AH: agrihorticulture; ASH: agrisilvihorticulture; AHS: agrihortisilviculture; E: elevation; C: carbon; CO2: carbon-di-oxide; IPCC: Intergovernmental Panel on Climate Change; DBH: diameter at breast height; AGBD: aboveground biomass density; BGBD: belowground biomass density; GSVD: growing stock volume density 相似文献
38.
39.
S. P. S. Kushwaha S. Nandy Mohini Gupta 《Environmental monitoring and assessment》2014,186(9):5911-5920
Biomass is an important entity to understand the capacity of an ecosystem to sequester and accumulate carbon over time. The present study, done in collaboration with the Delhi Forest Department, focused on the estimation of growing stock and the woody biomass in the so-called lungs of Delhi—the Asola-Bhatti Wildlife Sanctuary in northern Aravalli hills. The satellite-derived vegetation strata were field-inventoried using stratified random sampling procedure. Growing stock was calculated for the individual sample plots using field data and species-specific volume equations. Biomass was estimated from the growing stock and the specific gravity of the wood. Among the four vegetation types, viz. Prosopis juliflora, Anogeissus pendula, forest plantation and the scrub, the P. juliflora was found to be the dominant vegetation in the area, covering 23.43 km2 of the total area. The study revealed that P. juliflora forest with moderate density had the highest (10.7 m3/ha) while A. pendula forest with moderate density had the lowest (3.6 m3/ha) mean volume. The mean woody biomass was also found to be maximum in P. juliflora forest with moderate density (10.3 t/ha) and lowest in A. pendula forest with moderate density (3.48 t/ha). The total growing stock was estimated to be 20,772.95 m3 while total biomass worked out to be 19,366.83 t. A strong correlation was noticed between the normalized difference vegetation index (NDVI) and the growing stock (R 2?=?0.84)/biomass (R 2?=?0.88). The study demonstrated that growing stock and the biomass of the woody vegetation in Asola-Bhatti Wildlife Sanctuary could be estimated with high accuracy using optical remote sensing data. 相似文献
40.
Smriti Sharma Balwinder Singh V. K. Gupta 《Environmental monitoring and assessment》2014,186(11):7183-7193
Imidacloprid is extensively used on a broad range of crops worldwide as seed dressing, soil treatment, and foliar application. Hence, the degradation potential of bacterial strains from sugarcane-growing soils was studied in liquid medium for subsequent use in bioremediation of contaminated soils. The microbe cultures degrading imidacloprid were isolated and enriched on Dorn’s broth containing imidacloprid as sole carbon source maintained at 28 °C and Bacillus alkalinitrilicus showed maximum potential to degrade imidacloprid. Clay loam soil samples were fortified with imidacloprid at 50, 100, and 150 mg kg?1 along with 45?×?107 microbe cells under two opposing sets of conditions, viz., autoclaved and unautoclaved. To study degradation and metabolism of imidacloprid under these two conditions, samples were drawn at regular intervals of 7, 14, 28, 35, 42, 49, and 56 days. Among metabolites, three metabolites were detected, viz., 6-chloronicotinic acid, nitrosimine followed by imidacloprid-NTG under both the conditions. Total imidacloprid residues were not found to follow the first-order kinetics in both types of conditions. This paper reports for the first time the potential use of pure cultures of soil-isolated native bacterium B. alkalinitrilicus and also its use along with natural soil microflora for remediation of imidacloprid-contaminated soils. 相似文献