首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94篇
  免费   7篇
  国内免费   1篇
安全科学   2篇
废物处理   18篇
环保管理   24篇
综合类   7篇
基础理论   27篇
污染及防治   14篇
评价与监测   7篇
社会与环境   3篇
  2023年   2篇
  2021年   2篇
  2020年   1篇
  2019年   7篇
  2018年   4篇
  2017年   2篇
  2016年   1篇
  2015年   5篇
  2014年   4篇
  2013年   8篇
  2012年   8篇
  2011年   3篇
  2010年   6篇
  2009年   6篇
  2008年   7篇
  2007年   7篇
  2006年   6篇
  2005年   7篇
  2004年   2篇
  2003年   3篇
  2002年   2篇
  2000年   3篇
  1998年   1篇
  1996年   1篇
  1994年   1篇
  1991年   1篇
  1959年   1篇
  1957年   1篇
排序方式: 共有102条查询结果,搜索用时 312 毫秒
91.
The disposal of industrial and sewage water is a problem of increasing importance throughout the world. In India, and most of the developing countries untreated sewage and industrial wastes are discharged on land or into the running water streams which is used for irrigating crops. These wastes often contain high amount of trace elements which may accumulate in soils in excessive quantities on long term use and enter the food chain through absorption by the plants. Among the trace metals, Cd has received the greater attention because of its easy absorption and accumulation in plants and animals to levels toxic for their health. The objective of this study conducted in three industrially different cities viz., Ludhiana, Jalandhar and Malerkotla was to monitor the extent of Cd accumulation in soils and plants receiving untreated sewage water. Plant and soil samples were collected from sewage and tubewell irrigated areas. Soil samples were analysed for texture, pH, EC, organic carbon (OC), CaCO(3), bioavailable DTPA-Cd and plant samples were analysed for total Cd. In sewage irrigated soils, the mean values of pH were lower but organic carbon and electrical conductivity were generally higher both in surface and sub-surface layers of all the three cities as compared to tubewell irrigated soils. The mean DTPA- extractable Cd in sewage irrigated soil was 6.3- and 4.36-fold in Ludhiana, 3.38- and 1.71-fold in Jalandhar and 3.35- and 6.67-fold in Malerkotla in 0-15 and 15-30 cm soil depth, respectively, compared with the values in tubewell irrigated soils. The accumulation of DTPA-Cd in sewage irrigated soils was restricted to 30 cm depth after which the values were generally close to values in tubewell irrigated soils. Soil pH, OC, CaCO(3), clay and silt collectively accounted for 37.1%, 65.1% and 53.9% DTPA-extractable bioavailable Cd in soils of Ludhiana, Jalandhar and Malerkotla, respectively. Lower R(2) values in Ludhiana suggest that factors other than the ones mentioned may be affecting Cd availability. At all sites plants receiving sewage irrigation had elevated levels of Cd as compared to the plants receiving tubewell irrigation. The mean Cd content of sewage irrigated plants irrespective of the city was 5.96 microg g(-1) dry matter as compared to 0.98 microg g(-1) dry matter in tubewell irrigated plants. The results suggest that the intake of Cd obtained from consumption of crops grown on sewage irrigated soils would be much higher than the tolerable limits set by WHO and may, therefore, prove potentially toxic leading to various health ailments to humans and animals.  相似文献   
92.
Many jurisdictions around the globe have well-developed regulatory frameworks for the derivation and implementation of water quality guidelines (WQGs) or their equivalent (e.g. environmental quality standards, criteria, objectives or limits). However, a great many more still do not have such frameworks and are looking to introduce practical methods to manage chemical exposures in aquatic ecosystems. There is a potential opportunity for learning and sharing of data and information between experts from different jurisdictions in order to deliver efficient and effective methods to manage potential aquatic risks, including the considerable reduction in the need for aquatic toxicity testing and the rapid identification of common challenges. This paper reports the outputs of an international workshop with representatives from 14 countries held in Hong Kong in December 2011. The aim of the workshop and this paper was to identify ‘good practice’ in the development of WQGs to deliver to a range of environmental management goals. However, it is important to broaden this consideration to cover often overlooked facets of implementable WQGs, such as demonstrable field validation (i.e. does the WQG protect what it is supposed to?), fit for purpose of monitoring frameworks (often an on-going cost) and finally how are these monitoring data used to support management decisions in a manner that is transparent and understandable to stakeholders. It is clear that regulators and the regulated community have numerous pressures and constraints on their resources. Therefore, the final section of this paper addresses potential areas of collaboration and harmonisation. Such approaches could deliver a consistent foundation from which to assess potential chemical aquatic risks, including, for example, the adoption of bioavailability-based approaches for metals, whilst reducing administrative and technical burdens in jurisdictions.  相似文献   
93.
The remediation of per‐ and polyfluoroalkyl substances by injection of colloidal activated carbon (CAC) at a contaminated site in Central Canada was evaluated using various visualization and modeling methods. Radial diagrams were used to illustrate spatial and temporal trends in perfluoroalkyl acid (PFAA) concentrations, as well as various redox indicators. To assess the CAC adsorption capacity for perfluorooctane sulfonate (PFOS), laboratory Freundlich isotherms were derived for PFOS mixed with CAC in two solutions: (1) PFOS in a pH 7.5 synthetic water that was buffered by 1 millimolar NaHCO3 (Kf = 142,800 mg1‐a La/kg and = 0.59); and (2) a groundwater sample (pH = 7.4) containing PFOS among other PFAS from a former fire‐training area in the United States (Kf = 4,900 mg1‐a La/kg and a = 0.24). A mass balance approach was derived to facilitate the numerical modeling of mass redistribution after CAC injection, when mass transitions from a two‐phase system (aqueous and sorbed to organic matter) to a three‐phase system that also includes mass sorbed to CAC. An equilibrium mixing model of mass accumulation over time was developed using a finite‐difference solution and was verified by intermodel comparison for prediction of CAC longevity in the center of a source area. A three‐dimensional reactive transport model (ISR‐MT3DMS) was used to indicate that the CAC remedy implemented at the site is likely to be effective for PFOS remediation for decades. Model results are used to recommend remedial design and monitoring alternatives that account for the uncertainty in long‐term performance predictions.  相似文献   
94.
Simulation of back‐diffusion remediation timeframe for thin silt/clay layers, or when contaminant degradation is occurring, typically requires the use of a numerical model. Given the centimeter‐scale vertical grid spacing required to represent diffusion‐dominated transport, simulation of back‐diffusion in a 3‐D model may be computationally prohibitive. Use of a local 1‐D model domain approach for simulating back‐diffusion is demonstrated to have advantages but is limited to only some applications. Incorporation of a local domain approach for simulating back‐diffusion in a new model, In Situ Remediation‐MT3DMS (ISR‐MT3DMS) is validated based on a benchmark with MT3DMS and comparisons with a highly discretized finite difference numerical model. The approach used to estimate the vertical hydrodynamic dispersion coefficient is shown to have a significant influence on the simulated flux into and out of silt/clay layers in early time periods. Previously documented back‐diffusion at a Florida site is modeled for the purpose of evaluating the sensitivity of the back‐diffusion controlled remediation timeframe to various site characteristics. A base case simulation with a clay lens having a thickness of 0.2 m and a length of 100 m indicates that even after 99.96 percent aqueous TCE removal from the clay lens, the down‐gradient concentrations still exceed the MCL in groundwater monitoring wells. This shows that partial mass reduction from a NAPL source zone via in situ treatment may have little benefit for the long‐term management of contaminated sites, given that back‐diffusion will sustain a groundwater plume for a long period of time. Back‐diffusion model input parameters that have the greatest influence on remediation timeframe and thus may warrant more attention during field investigations, include the thickness of silt/clay lenses, retardation coefficient representing sorbed mass in silt/clay, and the groundwater velocity in adjacent higher permeability zones. Therefore, pump‐and‐treat systems implemented for the purpose of providing containment may have an additional benefit of reducing back‐diffusion remediation timeframe due to enhanced transverse advective fluxes at the sand/clay interface. Remediation timeframes are also moderately sensitive to the length of the silt/clay layers and transverse vertical dispersivity, but are less sensitive to degradation rates within silt/clay, contaminant solubility, contact time, tortuosity coefficient, and monitoring well‐screen length for the scenarios examined. ©2015 Wiley Periodicals, Inc.  相似文献   
95.
Modeling uptake kinetics of cadmium by field-grown lettuce   总被引:1,自引:0,他引:1  
Cadmium uptake by field grown Romaine lettuce treated with P-fertilizers of different Cd levels was investigated over an entire growing season. Results indicated that the rate of Cd uptake at a given time of the season can be satisfactorily described by the Michaelis-Menten kinetics, that is, plant uptake increases as the Cd concentration in soil solution increases, and it gradually approaches a saturation level. However, the rate constant of the Michaelis-Menten kinetics changes over the growing season. Under a given soil Cd level, the cadmium content in plant tissue decreases exponentially with time. To account for the dynamic nature of Cd uptake, a kinetic model integrating the time factor was developed to simulate Cd plant uptake over the growing season: C Plant=C Solution.PUF max.exp[-b.t], where C Plant and C Solution refer to the Cd content in plant tissue and soil solution, respectively, PUF max and b are kinetic constants.  相似文献   
96.
Mine reclamation with biosolids increases revegetation success but nutrient addition well in excess of vegetation requirements has the potential to increase leaching of NO3 and other biosolids constituents. A 3-yr water quality monitoring study was conducted on a Pennsylvania mine site reclaimed with biosolids applied at the maximum permitted and standard loading rate of 134 Mg ha(-1). Zero-tension lysimeters were installed at 1-m depth 1 yr before reclamation: three in the biosolids application area, one in a control area (no biosolids). Before reclamation, all water samples had pH in the range 4.7 to 6.2, acidity < 20 mg L(-1), and very low levels of all other measured parameters. Following reclamation, percolate water in the biosolids-treated area had lower pH and greater acidity than the control area. Acidity was greatest during the first winter following biosolids application, decreased during the spring, and showed a similar pattern but with much smaller concentrations the second year. Maximum first- year leachate NO3 concentrations were approximately 300 mg L(-1) and half as large the second year. Estimated inorganic N leaching loss during the first 2 yr after biosolids application was 2327 kg N ha(-1). Aluminum, Mn, Cu, Ni, Pb, and Zn followed similar leaching patterns as did acidity, and their mobilization appeared to be the result of the increased acidity. These results indicate that large applications of low-C/N-ratio biosolids could negatively impact area water quality and that biosolids reclamation practices should be modified to reduce this possibility.  相似文献   
97.
98.
Voluntary recolonization of sulfide-bearing waste rock dumps by native vegetation is inhibited by the harsh chemical and physical conditions. The success of volunteer vegetation on the waste rock surfaces at the Bingham Canyon (Utah) porphyry copper deposit is most strongly dependent on the soil pH and salinity, and to a lesser extent on physical characteristics such as compaction and distance from seed source. Vegetation cover and richness both decline below a paste pH of about 6 and above a paste conductivity of about 0.7 dS/m (for a 1:1 soil to water mixture). No significant vegetation establishment occurs below a soil pH of about 4.5. Young sulfide-bearing waste rock surfaces at Bingham Canyon have high salinity, but as reactive pyrite is depleted and salts are flushed from the soil, the salinity eventually declines, allowing volunteer native vegetation to become established on surfaces with a circumneutral pH. Under natural conditions, the pH of older acidic weathered surfaces will recover very slowly, but it can be rapidly raised by adding relatively small amounts of limestone because there are few intact reactive sulfides. For uncompacted waste rock surfaces with favorable chemical conditions, less than 90% gravel content, and that are located near a native seed source, the arithmetic mean volunteer vegetation cover was 56 +/- 24% and the mean species richness was 17 +/- 5. These data indicate that with adequate surface preparation and limestone addition, direct planting of older, acidic, but low salinity waste rock surfaces can greatly accelerate natural revegetation.  相似文献   
99.
This paper sets out the legislative background to the recycling of waste materials in the UK. Relevant items in this background include: the provision of recycling credits under the 1990 Environmental Protection Act; the draft EC Packaging Waste Directive; and the German DSD scheme. We next set out the elements of a cost‐benefit analysis of waste paper recycling, including the environmental impacts of recycling. The method is then applied to a recycling scheme in central Scotland. We find that whilst on private, financial grounds the scheme is unattractive, it passes the cost‐benefit test in the base‐line case; this justifies government support for this recycling scheme, given the data used.  相似文献   
100.
After nearly a century of height suppression, willows (Salix spp.) in the northern range of Yellowstone National Park, U.S.A., are increasing in height growth as a possible consequence of wolf (Canis lupus) restoration, climate change, or other factors. Regardless of the drivers, the recent release of this rare but important habitat type could have significant implications for associated songbirds that are exhibiting declines in the region. Our objective was to evaluate bird response to releasing willows by comparing willow structure and bird community composition across three willow growth conditions: height suppressed, recently released, and previously tall (i.e., tall prior to the height increase of released willows). Released and previously tall willows exhibited high and similar vertical structure, but released willows were significantly lower in horizontal structure. Suppressed willows were significantly shorter and lower in horizontal cover than released or previously tall willows. Bird richness increased along a gradient from lowest in suppressed to highest in previously tall willows, but abundance and diversity were similar between released and previously tall willows, despite lower horizontal cover in the released condition. Common Yellowthroat (Geothlypis trichas) and Lincoln's Sparrow (Melospiza lincolnii) were found in all three growth conditions; however, Yellow Warbler (Dendroica petechia), Warbling Vireo (Vireo gilvus), Willow Flycatcher (Empidonax traillii), and Song Sparrow (Melospiza melodii) were present in released and previously tall willows only. Wilson's Warbler (Wilsonia pusilla) was found in previously tall willows only, appearing to specialize on tall, dense willows. The results of our a priori habitat models indicated that foliage height diversity was the primary driver of bird richness, abundance, and diversity. These results indicate that vertical structure was a more important driver of bird community variables than horizontal structure and that riparian and willow-dependent bird species have responded positively to increased willow growth in the region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号