首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   237篇
  免费   0篇
  国内免费   6篇
安全科学   15篇
废物处理   8篇
环保管理   25篇
综合类   77篇
基础理论   42篇
环境理论   2篇
污染及防治   61篇
评价与监测   7篇
社会与环境   5篇
灾害及防治   1篇
  2021年   5篇
  2020年   5篇
  2018年   3篇
  2017年   4篇
  2015年   2篇
  2014年   3篇
  2013年   12篇
  2012年   10篇
  2011年   6篇
  2010年   5篇
  2009年   15篇
  2008年   11篇
  2007年   15篇
  2006年   9篇
  2005年   3篇
  2004年   26篇
  2003年   7篇
  2002年   5篇
  2001年   5篇
  2000年   6篇
  1999年   3篇
  1998年   2篇
  1997年   4篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1991年   2篇
  1990年   2篇
  1987年   2篇
  1984年   2篇
  1983年   3篇
  1970年   2篇
  1967年   3篇
  1966年   4篇
  1965年   5篇
  1962年   2篇
  1961年   1篇
  1960年   2篇
  1959年   3篇
  1958年   2篇
  1957年   7篇
  1956年   2篇
  1955年   1篇
  1954年   3篇
  1952年   2篇
  1946年   1篇
  1944年   1篇
  1931年   1篇
  1928年   1篇
  1926年   1篇
排序方式: 共有243条查询结果,搜索用时 15 毫秒
111.
At the last glacial maximum, vast ice sheets covered many continental areas. The beds of some shallow seas were exposed thereby connecting previously separated landmasses. Although some areas were ice-free and supported a flora and fauna, mean annual temperatures were 10-13 degrees C colder than during the Holocene. Within a few millennia of the glacial maximum, deglaciation started, characterized by a series of climatic fluctuations between about 18,000 and 11,400 years ago. Following the general thermal maximum in the Holocene, there has been a modest overall cooling trend, superimposed upon which have been a series of millennial and centennial fluctuations in climate such as the "Little Ice Age spanning approximately the late 13th to early 19th centuries. Throughout the climatic fluctuations of the last 150,000 years, Arctic ecosystems and biota have been close to their minimum extent within the most recent 10,000 years. They suffered loss of diversity as a result of extinctions during the most recent large-magnitude rapid global warming at the end of the last glacial stage. Consequently, Arctic ecosystems and biota such as large vertebrates are already under pressure and are particularly vulnerable to current and projected future global warming. Evidence from the past indicates that the treeline will very probably advance, perhaps rapidly, into tundra areas, as it did during the early Holocene, reducing the extent of tundra and increasing the risk of species extinction. Species will very probably extend their ranges northwards, displacing Arctic species as in the past. However, unlike the early Holocene, when lower relative sea level allowed a belt of tundra to persist around at least some parts of the Arctic basin when treelines advanced to the present coast, sea level is very likely to rise in future, further restricting the area of tundra and other treeless Arctic ecosystems. The negative response of current Arctic ecosystems to global climatic conditions that are apparently without precedent during the Pleistocene is likely to be considerable, particularly as their exposure to co-occurring environmental changes (such as enhanced levels of UV-B, deposition of nitrogen compounds from the atmosphere, heavy metal and acidic pollution, radioactive contamination, increased habitat fragmentation) is also without precedent.  相似文献   
112.
113.
Waste and process gases from thermal power and metallurgical plants or such products from alkali-chloride industries contain metallic, inorganic and organic mercury. Widespread processes applied to remove the greatest amount of mercury are absorption and adsorption. Caused by the lowering of the emission limit from 200 to 50 µg/m3 [STP] by national and European legislators, considerable efforts have been made to enhance the efficiency of the main separation units of flue gas cleaning plants by applying the appropriate technological measures. This article is focused on the removal of mercury from waste gases. The state of engineering is described, especially with regard to enhancing the efficiency of separation in the raw gas, in wet, dry and quasi-dry processes as well as in tail-end process units. Specially impregnated ceramic carriers can be used for the selective separation of metallic, inorganic and organic mercury. Amalgamation has been investigated as a possible separation mechanism both experimentally and in theory. Using the ceramic reactor, removal rates for gaseous mercury and its compounds can be achieved which are even lower than 50 µg/m3 [STP]. The technology, the separation mechanisms and the ecological advantages through the use of ceramic reactors are presented in the article as well.  相似文献   
114.
Hochwasser 2002     
In August 2002, highly contaminated areas in the region of Bitterfeld, e.g. the floodplain of the creek Spittelwasser, as well as the adjacent regions of Jeßnitz and Raguhn, were submerged by the river Mulde. An input of mobilized contaminated sediments in residential areas was the matter of concern. The objective of the present study was to estimate the pollutants load on the basis of chemical and biological data and identify the sources of pollutants. Deposited sludge and flood water samples were assessed on the basis of biological and chemical analyses and in comparison with administrative reference values. The pollution of the investigated sites was rather heterogeneous. At several sites, tolerance limits of the German Klärschlammverordnung or the Bundesbodenschutzverordnung were clearly exceeded, e.g. for Pb, As and HCH. Organic extracts exhibited significant effects in several biotests. This may be relevant with respect to direct particle uptake via ingestion or respiration. Pollution patterns for heavy metals as well as for organic pollutants differed significantly from the pattern found in the Spittelwasser flood plain before the inundation, which is in contrast to the initial hypothesis of a possible transport of contaminated Spittelwasser sediments into residential areas. Interestingly, a correlation of chemical load and the overall biological effect could be shown. From the viewpoint of the precautionary principle, the identification of the compounds exerting toxic effects and of the respective pollutant sources would be desirable.  相似文献   
115.
116.
117.
118.
119.
The substituent chlorine is generally considered to be an agent which reduces the reactivity of organic molecules with regard to the indirect photodegradation by OH radicals. A systematic study of selected, representative classes of compounds, however, reveals that the deactivating influence of chlorine on the OH radical reactivity is actually rather moderate. In individual cases, for instance, chlorine substitution can even lead to an increase in this reactivity. This study is based on both experimental data and on the molecular orbital calculations of OH radical reactivity.  相似文献   
120.
Biological and physical processes in the Arctic system operate at various temporal and spatial scales to impact large-scale feedbacks and interactions with the earth system. There are four main potential feedback mechanisms between the impacts of climate change on the Arctic and the global climate system: albedo, greenhouse gas emissions or uptake by ecosystems, greenhouse gas emissions from methane hydrates, and increased freshwater fluxes that could affect the thermohaline circulation. All these feedbacks are controlled to some extent by changes in ecosystem distribution and character and particularly by large-scale movement of vegetation zones. Indications from a few, full annual measurements of CO2 fluxes are that currently the source areas exceed sink areas in geographical distribution. The little available information on CH4 sources indicates that emissions at the landscape level are of great importance for the total greenhouse balance of the circumpolar North. Energy and water balances of Arctic landscapes are also important feedback mechanisms in a changing climate. Increasing density and spatial expansion of vegetation will cause a lowering of the albedo and more energy to be absorbed on the ground. This effect is likely to exceed the negative feedback of increased C sequestration in greater primary productivity resulting from the displacements of areas of polar desert by tundra, and areas of tundra by forest. The degradation of permafrost has complex consequences for trace gas dynamics. In areas of discontinuous permafrost, warming, will lead to a complete loss of the permafrost. Depending on local hydrological conditions this may in turn lead to a wetting or drying of the environment with subsequent implications for greenhouse gas fluxes. Overall, the complex interactions between processes contributing to feedbacks, variability over time and space in these processes, and insufficient data have generated considerable uncertainties in estimating the net effects of climate change on terrestrial feedbacks to the climate system. This uncertainty applies to magnitude, and even direction of some of the feedbacks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号