首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32260篇
  免费   209篇
  国内免费   211篇
安全科学   569篇
废物处理   1876篇
环保管理   3717篇
综合类   4063篇
基础理论   8748篇
环境理论   8篇
污染及防治   8258篇
评价与监测   2844篇
社会与环境   2468篇
灾害及防治   129篇
  2023年   130篇
  2022年   317篇
  2021年   317篇
  2020年   178篇
  2019年   220篇
  2018年   1747篇
  2017年   1644篇
  2016年   1747篇
  2015年   560篇
  2014年   770篇
  2013年   2075篇
  2012年   1299篇
  2011年   2260篇
  2010年   1562篇
  2009年   1431篇
  2008年   1867篇
  2007年   2262篇
  2006年   1031篇
  2005年   842篇
  2004年   842篇
  2003年   849篇
  2002年   828篇
  2001年   968篇
  2000年   673篇
  1999年   423篇
  1998年   293篇
  1997年   258篇
  1996年   295篇
  1995年   291篇
  1994年   262篇
  1993年   244篇
  1992年   245篇
  1991年   213篇
  1990年   222篇
  1989年   228篇
  1988年   199篇
  1987年   162篇
  1986年   129篇
  1985年   144篇
  1984年   178篇
  1983年   162篇
  1982年   198篇
  1981年   134篇
  1980年   121篇
  1979年   155篇
  1978年   118篇
  1977年   109篇
  1976年   100篇
  1975年   87篇
  1974年   89篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
731.
Abstract

In the present study, ethanolic extract from Heliopsis longipes roots and affinin/spilanthol against Aspergillus parasiticus growth and aflatoxins production were studied in relation to the expression of aflD and aflR, two key genes of aflatoxins biosynthetic pathway. Phytochemical analysis of the ethanolic extract by GC-EIMS identified affinin/spilanthol (7.84?±?0.27?mg g?1) as the most abundant compounds in H. longipes roots. The antifungal and anti-aflatoxigenic assays showed that affinin/spilanthol at 300?µg mL?1 produced the higher inhibition of radial growth (95%), as well as, the higher aflatoxins production inhibition (61%) in comparison to H. longipes roots (87% and 48%, respectively). qRT-PCR revealed that the expression of aflD and aflR genes showed a higher downregulation in affinin/spilanthol at 300?µg mL?1. The expression ratio of alfD was suppressed by affinin/spilanthol in 79% and aflR in 84%, while, a lower expression ratio suppressed by H. longipes was obtained, alfD (55%) and aflR (59%). Affinin/spilanthol possesses higher antifungal and anti-aflatoxigenic activity against A. parasiticus rather than H. longipes roots, and this anti-aflaxotigenic activity occurring via downregulation of the aflD and aflR genes. Thus, H. longipes roots and affinin/spilanthol can be considered potent antifungal agents against aflatoxigenic fungus, especially, affinin/spilanthol.  相似文献   
732.
Abstract

The current study estimated the dissipation rates of abamectin, chlorfenapyr and pyridaben acaricides in pods of green beans (Phaseolus vulgaris L.) under field conditions in Egypt. Pesticides were extracted and cleaned-up by QuEChERS method and were analyzed by HPLC. The dissipation of these acaricides followed the first order kinetics model with half-life (t1/2) values 1.00, 3.50 and 1.50?days for abamectin, chlorfenapyr and pyridaben, respectively. The lowest residues, at different time intervals of field application rate of each pesticide, were observed with abamectin followed by pyridaben and then chlorfenapyr. Pre-harvest intervals (PHIs) were 10.00, 13.50 and 6.00?days for abamectin, chlorfenapyr and pyridaben, respectively and were below the established European maximum residue limits (EU MRLs) 10–14, 14–21 and 7–10?days after application, respectively. If the fresh pods will be consumed after harvest, it is expected that the presence of these pesticides in the food will have a negative impact on human health. Therefore, the elimination of the residues of these harmful pesticides must be carried out.  相似文献   
733.
Microorganisms have developed copper-resistance mechanisms in order to survive in contaminated environments. The abundance and expression of the copper-resistance genes cusA and copA, encoding respectively for a Resistance Cell Nodulation protein and for a P-type ATP-ase pump, was assessed along a gradient of copper concentration in microcosms prepared from Seine estuary mudflat sediment. We demonstrated that the abundance of copA and cusA genes decreased with the increase of copper concentration and that cusA gene was up to ten times higher than the copA gene. Only the copA gene was expressed in both oxic and anoxic conditions. The abundance and activity of the microbial community remained constant whatever the concentrations of copper along the gradient. The molecular phylogeny of the two copper-resistance genes was studied and revealed that the increase of copper increased the diversity of copA and cusA gene sequences.  相似文献   
734.
Little research has been conducted on the occurrence of pharmaceuticals and personal care products (PPCPs) in the marine environment despite being increasingly impacted by these contaminants. This article reviews data on the occurrence of PPCPs in seawater, sediment, and organisms in the marine environment. Data pertaining to 196 pharmaceuticals and 37 personal care products reported from more than 50 marine sites are analyzed while taking sampling strategies and analytical methods into account. Particular attention is focused on the most frequently detected substances at highest concentrations. A snapshot of the most impacted marine sites is provided by comparing the highest concentrations reported for quantified substances. The present review reveals that: (i) PPCPs are widespread in seawater, particularly at sites impacted by anthropogenic activities, and (ii) the most frequently investigated and detected molecules in seawater and sediments are antibiotics, such as erythromycin. Moreover, this review points out other PPCPs of concern, such as ultraviolet filters, and underlines the scarcity of data on those substances despite recent evidence on their occurrence in marine organisms. The exposure of marine organisms in regard to these insufficient data is discussed.  相似文献   
735.
Seaweeds have been used as a source of traditional medicine worldwide for the treatment of various ailments, mainly due to their ability to quench the free radicals. The present study aims at evaluating the protective effect of methanolic extract of Gelidiella acerosa, an edible red seaweed against 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced toxicity in peripheral blood mononuclear cells (PBMC). For evaluating the protective effect of G. acerosa, PBMC were divided into four groups: vehicle control, TCDD (10 nM), TCDD?+?G. acerosa (300 μg/ml), and G. acerosa alone treated. Scavenging of intracellular reactive oxygen species (ROS) induced by TCDD was assessed by the dichloro-dihydro-fluorescein diacetate (DCFH-DA) method. Alterations at macromolecular level were quantified through lipid peroxidation (LPO) level, protein carbonyl content (PCC) level, and comet assay. The cellular morphology upon TCDD toxicity and G. acerosa treatment was obtained by light microscopy and histopathological studies. The chemical composition present in the methanolic extract of G. acerosa was determined by gas chromatography-mass spectrometry (GC-MS) analysis. The results reveal that 10 nM TCDD caused significant (P?<?0.05) reduction in cell viability (94.10?±?0.99), and treatment with 300 μg/ml extract increased the cell viability (99.24?±?0.69). TCDD treatment resulted in a significant increase in the production of ROS, LPO (114?±?0.09), and PCC (15.13?±?1.53) compared to the control, whereas co-treatment with G. acerosa significantly (P?<?0.05) mitigated the effects. Further, G. acerosa significantly (P?<?0.05) prevented TCDD-induced genotoxicity and cell damage. GC-MS analysis showed the presence of n-hexadecanoic acid (retention time (RT) 13.15), cholesterol (RT 28.80), α-d-glucopyranose, 4-O-α-d-galactopyranosyl (RT 20.01), and azulene (RT 4.20). The findings suggest that G. acerosa has a strong protective ability against TCDD-induced cytotoxicity, oxidative stress, and DNA damage.  相似文献   
736.
Reactive waste dumps with sulfide minerals promote acid mine drainage (AMD), which results in water and soil contamination by metals and metalloids. In these systems, contamination is regulated by many factors, such as mineralogical composition of soil and the presence of sorption sites on specific mineral phases. So, the present study dedicates itself to understanding the distribution of trace elements in different size fractions (<2-mm and <2-μm fractions) of mining soils and to evaluate the relationship between chemical and mineralogical composition. Cerdeirinha and Penedono, located in Portugal, were the waste dumps under study. The results revealed that the two waste dumps have high degree of contamination by metals and arsenic and that these elements are concentrated in the clay size fraction. Hence, the higher degree of contamination by toxic elements, especially arsenic in Penedono as well as the role of clay minerals, jarosite, and goethite in retaining trace elements has management implications. Such information must be carefully thought in the rehabilitation projects to be planned for both waste dumps.  相似文献   
737.
Nonionic surfactant-modified clay is a useful absorbent material that effectively removes hydrophobic organic compounds from soil/groundwater. We developed a novel material by applying an immobilized fungal laccase onto nonionic surfactant-modified clay. Low-water-solubility polycyclic aromatic hydrocarbons (PAHs) (naphthalene/phenanthrene) were degraded in the presence of this bioactive material. PAH degradation by free laccase was higher than degradation by immobilized laccase when the surfactant concentration was allowed to form micelles. PAH degradation by immobilized laccase on TX-100-modified clay was higher than on Brij35-modified clay. Strong laccase degradation of PAH can be maintained by adding surfactant monomers or micelles. The physical adsorption of nonionic surfactants onto clay plays an important role in PAH degradation by laccase, which can be explained by the structure and molecular interactions of the surfactant with the clay and enzyme. A system where laccase is immobilized onto TX-100-monomer-modified clay is a good candidate bioactive material for in situ PAHs bioremediation.  相似文献   
738.
Zinc oxide nanoparticles (ZnO NPs) are used in an array of products and processes, ranging from personal care products to antifouling paints, textiles, food additives, antibacterial agents and environmental remediation processes. Soils are an environment likely to be exposed to manmade nanoparticles due to the practice of applying sewage sludge as a fertiliser or as an organic soil improver. However, understanding on the interactions between soil properties, nanoparticles and the organisms that live within soil is lacking, especially with regards to soil bacterial communities. We studied the effects of nanoparticulate, non-nanoparticulate and ionic zinc (in the form of zinc chloride) on the composition of bacterial communities in soil with a modified pH range (from pH 4.5 to pH 7.2). We observed strong pH-dependent effects on the interaction between bacterial communities and all forms of zinc, with the largest changes in bacterial community composition occurring in soils with low and medium pH levels (pH 4.8 and 5.9). The high pH soil (pH 7.2) was less susceptible to the effects of zinc exposure. At the highest doses of zinc (2500 mg/kg dw soil), both nano and non-nano particulate zinc applications elicited a similar response in the soil bacterial community, and this differed significantly to the ionic zinc salt treatment. The results highlight the importance of considering soil pH in nanotoxicology studies, although further work is needed to determine the exact mechanisms controlling the toxicity and fate and interactions of nanoparticles with soil microbial communities.  相似文献   
739.
In this study, a bacterial strain able to use sulcotrione, a β-triketone herbicide, as sole source of carbon and energy was isolated from soil samples previously treated with this herbicide. Phylogenetic study based on16S rRNA gene sequence showed that the isolate has 100 % of similarity with several Bradyrhizobium and was accordingly designated as Bradyrhizobium sp. SR1. Plasmid profiling revealed the presence of a large plasmid (>50 kb) in SR1 not cured under nonselective conditions. Its transfer to Escherichia coli by electroporation failed to induce β-triketone degrading capacity, suggesting that degrading genes possibly located on this plasmid cannot be expressed in E. coli or that they are not plasmid borne. The evaluation of the SR1 ability to degrade various synthetic (mesotrione and tembotrione) and natural (leptospermone) triketones showed that this strain was also able to degrade mesotrione. Although SR1 was able to entirely dissipate both herbicides, degradation rate of sulcotrione was ten times higher than that of mesotrione, showing a greater affinity of degrading-enzyme system to sulcotrione. Degradation pathway of sulcotrione involved the formation of 2-chloro-4-mesylbenzoic acid (CMBA), previously identified in sulcotrione degradation, and of a new metabolite identified as hydroxy-sulcotrione. Mesotrione degradation pathway leads to the accumulation of 4-methylsulfonyl-2-nitrobenzoic acid (MNBA) and 2-amino-4 methylsulfonylbenzoic acid (AMBA), two well-known metabolites of this herbicide. Along with the dissipation of β-triketones, one could observe the decrease in 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibition, indicating that toxicity was due to parent molecules, and not to the formed metabolites. This is the first report of the isolation of bacterial strain able to transform two β-triketones.  相似文献   
740.
Vegetable oils are used as raw materials for biodiesel production using transesterification reaction. Several methods for the production of biodiesel were developed using chemical (alkali and acidic compounds) and biological catalysts (lipases). Biodiesel production catalyzed by lipases is energy and cost-saving processes and is carried out at normal temperature and pressure. The need for an efficient method for screening larger number of variables has led to the adoption of statistical experimental design. In the present study, packed bed reactor was designed to study with mixed immobilized biocatalysts to have higher productivity under optimum conditions. Contrary to the single-step acyl migration mechanism, a two-step stepwise reaction mechanism involving immobilized Candida rugosa lipase and immobilized Rhizopus oryzae cells was employed for the present work. This method was chosen because enzymatic hydrolysis followed by esterification can tolerate high free fatty acid containing oils. The effects of flow rate and bed height on biodiesel yield were studied using two factors five-level central composite design (CCD) and response surface methodology (RSM). Maximum biodiesel yield of 85 and 81 % was obtained for jatropha oil and karanja oil with the optimum bed height and optimum flow rate of 32.6 cm and 1.35 L/h, and 32.6 cm and 1.36 L/h, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号