全文获取类型
收费全文 | 2115篇 |
免费 | 280篇 |
国内免费 | 803篇 |
专业分类
安全科学 | 284篇 |
废物处理 | 29篇 |
环保管理 | 148篇 |
综合类 | 1786篇 |
基础理论 | 328篇 |
污染及防治 | 165篇 |
评价与监测 | 220篇 |
社会与环境 | 156篇 |
灾害及防治 | 82篇 |
出版年
2024年 | 25篇 |
2023年 | 72篇 |
2022年 | 150篇 |
2021年 | 145篇 |
2020年 | 215篇 |
2019年 | 120篇 |
2018年 | 107篇 |
2017年 | 151篇 |
2016年 | 115篇 |
2015年 | 156篇 |
2014年 | 115篇 |
2013年 | 137篇 |
2012年 | 209篇 |
2011年 | 184篇 |
2010年 | 189篇 |
2009年 | 163篇 |
2008年 | 128篇 |
2007年 | 173篇 |
2006年 | 163篇 |
2005年 | 157篇 |
2004年 | 104篇 |
2003年 | 44篇 |
2002年 | 54篇 |
2001年 | 48篇 |
2000年 | 36篇 |
1999年 | 23篇 |
1998年 | 3篇 |
1997年 | 5篇 |
1996年 | 3篇 |
1995年 | 1篇 |
1994年 | 2篇 |
1992年 | 1篇 |
排序方式: 共有3198条查询结果,搜索用时 19 毫秒
51.
水泥生产过程中碳排放因子的测算是计算水泥碳排放量的基础,为了准确测算我国水泥行业熟料煅烧阶段碳酸盐矿物分解释放CO2的碳排放因子,就需要对水泥生产线上相关样品做成分测定和综合分析.通过对国内近百条代表性较强的水泥生产线上的生料、熟料、水泥、石灰石、燃煤等样品进行钙、镁、烧失量、碳酸盐等化学成分的定量分析,并考虑新型干法窑和立窑两种生产工艺类型的差别,分析测算了基于国内水泥生产的工艺碳排放因子.结果表明:生料碳酸盐法测算碳排放因子的结果较熟料法的结果低约10kgCO2/tcl;不同窑型的碳排放因子存在明显差异,新型干法窑的碳排放因子多集中在500~520kgCO2/tcl,立窑碳排放因子多集中在480~500kgCO2/tcl;多数熟料含有少量碳酸盐.生料碳酸盐法不涉及燃煤灰分的化学成分,可以规避燃煤灰分成分的影响,测算碳排放因子采用生料碳酸盐法较准确,并且应基于不同窑型,同时考虑碳酸盐分解率问题. 相似文献
52.
为应对大规模风电并网运行带来的诸多不利因素,在传统水、火电机组有功控制技术的基础上,综合风电运行特点,研究分析了计划曲线跟踪、限时段控制等多种风电有功控制策略,并且成功实现了宁夏首次风电联网有功闭环控制。研究结果表明:风电有功控制策略有较强的可行性,能够为电网接纳大规模风电运行提供关键技术支撑。 相似文献
53.
针对各地公路碳排放的空间差异与关联特征,制定合理的低碳策略,实现各地协同碳减排,是行业可持续发展的热点问题。以江西省为研究对象,采用空间自相关、社会网络分析和引力模型等分析11地市公路行业碳排放的空间差异与关联,识别社会网络的结构特征及其演变趋势,明确不同地市在网络中的地位和作用,结果显示:(1)公路货运是公路行业碳排放的最主要来源;(2)江西省公路行业碳排放整体上呈现空间随机分布,不存在全局的空间聚集性,且局部空间聚集特征不断变化;(3)公路行业碳排放网络逐渐从南昌、新余双中心结构演变为南昌为主的单中心结构,网络的协同作用整体呈减弱趋势,核心地市对外围地市的影响力和带动作用不足。 相似文献
54.
通过构建微宇宙湿地柱模拟气候升温的方法,采用高通量测序和核磁共振技术,分别研究了湿地土壤微生物群落和磷素形态对暖化作用的响应特征.结果表明,暖化作用导致了Firmicutes、Clostridia、Clostridiales、Clostridiaceae和Clostridium的相对丰度分别显著下降65%~98%、69%~87%、67%~87%、73%~97%和74%~93%,这表明暖化作用对不同分类水平上的物种Firmicutes到Clostridium具有显著的抑制效应.通过主坐标分析和聚类分析,不同湿地柱采样点的暖化组与对照组样本表现出显著的分离特征,揭示了暖化作用能够诱导微生物群落组成发生显著性变化.磷酸单酯和正磷酸盐是各湿地柱土壤主导的磷素形态,同时暖化作用导致了XX湿地柱采样点的磷酸单酯和正磷酸盐相对丰度分别显著升高275%和下降20%,JH湿地柱采样点的磷酸单酯和多聚磷酸盐相对丰度分别显著升高85%和下降49%,这表明不同磷素形态对暖化作用的响应具有土壤异质性特征.通过典型对应分析,揭示了暖化条件下微生物群落组成的显著变化对磷素形态具有显著的影响效应. 相似文献
55.
京杭运河杭州段水体污染和细菌群落结构特征 总被引:1,自引:0,他引:1
为了解人类活动对城市河道水体污染和细菌群落的影响,选取京杭运河杭州段进行了分季节采样研究。测定了水体的环境与水质参数,分析了细菌丰度、胞外酶活性和群落结构变化。结果显示,从上游到下游,水体中高锰酸盐指数、氨氮、总氮以及细菌丰度和β-葡萄糖苷酶活性大体呈递增趋势,冬季水体总体污染水平及细菌丰度均显著高于其他季节。水体中细菌的主要种类集中在变形菌门(Proteobacteria)、放线菌门(Actinobacteria)、拟杆菌门(Bacterioidetes)、厚壁菌门(Firmicutes)和蓝藻门(Cyanobacteria),所占比例分别为37.8%、24.3%、18.9%、10.8%和8.1%,属于黄杆菌(Flavobacterium)、厚壁菌(Firmicutes bacterium)和放线菌(Actinobacterium)的细菌是水体中大多数时间的优势细菌。限制性排序分析显示,水体细菌群落结构从上游到下游差异明显,高锰酸盐指数和总氮是关键影响因子。杭州市区由人类活动产生的污染物输入是京杭运河杭州段的主要污染源,水体细菌群落对水体污染物的变化有着明显的响应。 相似文献
56.
土壤碳库管理指数(CPMI)是表征土壤碳库变化的一个重要量化指标,能够反映土壤的碳库变化和碳库质量。选取庐山8种森林植被类型土壤为研究对象,对其土壤有机碳库特征及碳库管理指数进行系统研究。结论表明:(1)土壤有机碳(SOC)主要分布于0~20 cm土层中,随着土层深度增加,不同森林植被类型下SOC含量急剧下降;在0~60 cm土层中,不同森林植被类型下SOC含量的平均值排序为:马尾松林常绿阔叶林灌丛针阔混交林常绿-落叶混交林黄山松林落叶阔叶林竹林。(2)不同森林植被类型下活性有机碳(ASOC)含量为0.24~0.57 g·kg–1,总有机碳(TOC)含量为9.72~14.74 g·kg–1,土壤碳库指数(CPI)为1.63~2.48,碳库活度(A)为0.019~0.062,碳库活度指数(AI)为0.388~1.265。不同森林植被类型下ASOC含量排序:落叶阔叶林黄山松林常绿-落叶阔叶混交林灌丛针阔混交林常绿阔叶林竹林马尾松林;不同森林植被类型下ASOC/TOC(%)排序:落叶阔叶林黄山松林常绿-落叶阔叶混交林竹林灌丛针阔混交林常绿阔叶林马尾松林;不同森林植被类型下CPMI排序为:落叶阔叶林黄山松林常绿-落叶阔叶混交林灌丛针阔混交林常绿阔叶林竹林马尾松林。 相似文献
57.
随着中国城市化和工业化的加速发展,大气污染的问题日益突出,严重危害公众身体健康。基于安徽省逐小时PM2.5浓度监测数据,采用后向轨迹模式、潜在源因子分析法(PSCF)和权重浓度分析法(CWT),构建PM2.5来源分析模型,分析了安徽省PM2.5的来源,并结合地理探测器辨析了影响PM2.5本底贡献浓度的驱动因子。结果表明:(1)本底贡献、本底外溢和外地输送这3个动态过程对安徽省PM2.5浓度的时空变化有重要的影响;(2)PM2.5月累计逐小时测量浓度、总浓度、外地输送浓度、本底贡献浓度、本底外溢浓度和月均PM2.5本底排放贡献率,均在整体呈现出西南高、东北低的分布趋势,但前3项在安徽西北部的阜阳、亳州和淮北等地出现高值区;(3)安徽省约97.5%的面积外地输送贡献率>50%,下辖市PM2.5本底排放贡献率在30%~50%,说明1月污染以外地输送为主;(4)工厂密度、车辆保有量密度和人口密度对PM2.5月累计本底贡献浓度的解释力q值分别为0.33、0.47和0.61,通过与PM2.5月累计测量浓度地理探测分析结果的比较,表明人为要素与PM2.5月累计本底贡献浓度的关系更加密切。研究结果可为区域大气污染治理提供科学的参考依据。 相似文献
58.
生态工业园区"四位一体"运行模式研究 总被引:1,自引:0,他引:1
生态工业园区是依据清洁生产要求、循环经济理念及工业生态学原理,设计建立的一种新型工业园区。生态工业园区遵从循环经济的3R原则。建设生态工业园区是一个系统工程,构建政府、企业、公众、中介组织为主的“四位一体”生态工业园区运行模式。为诚国生态工业园区理论研究的深化和实践的深入提供参考。 相似文献
59.
以动态生成的CaO孔隙网络为骨架,按照不退行随机行走模型(NRRW),模拟气体分子在CaO孔隙中的扩散过程,计算了SO2分子的扩散系数和行走维数,并在SO2非线性扩散反应方程基础上,分析了CaO颗粒孔隙中SO2浓度的分布特性。 相似文献
60.
对TA高效降解菌株的生长培养基进行了5因素2水平标准的正交设计,考察了碳源(精对苯二甲酸PTA)、氮源(NH4Cl)、磷源(K2HPO4)、生长因子(MgSO4、FeSO4、CaCl2的混合物)和酵母膏对菌体生长的影响。并与肉汤培养基相对照,得到TA高效降解菌株生长培养基为:PTA10g/L;NH4Cl 0.5g/L;K2HPO4 0.1g/L;生长因子(MgSO4 0.1g/L,FeSO4 0.01g/L,CaCl2 0.01g/L的混合物);Y.E2.5g/L。 相似文献