首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   218篇
  免费   2篇
  国内免费   15篇
安全科学   9篇
废物处理   37篇
环保管理   15篇
综合类   24篇
基础理论   38篇
污染及防治   67篇
评价与监测   28篇
社会与环境   17篇
  2024年   1篇
  2023年   9篇
  2022年   22篇
  2021年   21篇
  2020年   2篇
  2019年   5篇
  2018年   9篇
  2017年   17篇
  2016年   16篇
  2015年   12篇
  2014年   8篇
  2013年   27篇
  2012年   20篇
  2011年   21篇
  2010年   10篇
  2009年   8篇
  2008年   4篇
  2007年   5篇
  2006年   3篇
  2005年   3篇
  2004年   5篇
  2003年   1篇
  2002年   1篇
  1999年   1篇
  1997年   1篇
  1990年   1篇
  1965年   1篇
  1964年   1篇
排序方式: 共有235条查询结果,搜索用时 31 毫秒
181.
Graphene was discovered in 2004 and has attracted intensive interests because of its unique mechanical, electric, thermal, optical, and structural properties, which makes graphene a potential candidate for various applications. Graphene is being used as a composite or filler material with metals, metal oxides, and polymers for potential advanced applications in solar cells, lithium-ion batteries, photocatalysis and sensing. These applications depend upon the distinctive properties of graphene, which in turn depend on the adopted synthetic approach. This article reviews the recent developments in synthesis of graphene and related composite materials. The synthesis of graphene through exfoliation, epitaxial growth and direct growth via carbon source, and modification approaches by covalent and noncovalent methodologies are discussed. Graphene-based metal and metal oxide composites for the purification of wastewater using photolytic process are also presented.  相似文献   
182.

Microplastic pollution is becoming a major issue for human health due to the recent discovery of microplastics in most ecosystems. Here, we review the sources, formation, occurrence, toxicity and remediation methods of microplastics. We distinguish ocean-based and land-based sources of microplastics. Microplastics have been found in biological samples such as faeces, sputum, saliva, blood and placenta. Cancer, intestinal, pulmonary, cardiovascular, infectious and inflammatory diseases are induced or mediated by microplastics. Microplastic exposure during pregnancy and maternal period is also discussed. Remediation methods include coagulation, membrane bioreactors, sand filtration, adsorption, photocatalytic degradation, electrocoagulation and magnetic separation. Control strategies comprise reducing plastic usage, behavioural change, and using biodegradable plastics. Global plastic production has risen dramatically over the past 70 years to reach 359 million tonnes. China is the world's top producer, contributing 17.5% to global production, while Turkey generates the most plastic waste in the Mediterranean region, at 144 tonnes per day. Microplastics comprise 75% of marine waste, with land-based sources responsible for 80–90% of pollution, while ocean-based sources account for only 10–20%. Microplastics induce toxic effects on humans and animals, such as cytotoxicity, immune response, oxidative stress, barrier attributes, and genotoxicity, even at minimal dosages of 10 μg/mL. Ingestion of microplastics by marine animals results in alterations in gastrointestinal tract physiology, immune system depression, oxidative stress, cytotoxicity, differential gene expression, and growth inhibition. Furthermore, bioaccumulation of microplastics in the tissues of aquatic organisms can have adverse effects on the aquatic ecosystem, with potential transmission of microplastics to humans and birds. Changing individual behaviours and governmental actions, such as implementing bans, taxes, or pricing on plastic carrier bags, has significantly reduced plastic consumption to 8–85% in various countries worldwide. The microplastic minimisation approach follows an upside-down pyramid, starting with prevention, followed by reducing, reusing, recycling, recovering, and ending with disposal as the least preferable option.

  相似文献   
183.
Bacterial strain RV9 recovered from greengram nodules tolerated 2400 μg/mL of hexaconazole and was identified by 16 S rDNA sequence analysis as Bradyrhizobium japonicum(KY940048). Strain RV9 produced IAA(61.6 μg/mL), ACC deaminase(51.7 mg/(protein·hr)), solubilized TCP(105 μg/mL), secreted 337.6 μg/mL EPS, and produced SA(52.2 μg/mL) and 2,3-DHBA(28.3 μg/mL). Exopolysaccharides produced by strain RV9 was quantified and characterized by SEM, AFM, EDX and FTIR. Beyond tolerance limit,hexaconazole caused cellular impairment and reduced the viability of strain RV9 revealed by SEM and CLSM. Hexaconazole distorted the root tips and altered nodule structure leading thereby to reduction in the performance of greengram. Also, the level of antioxidant enzymes, proline, TBARS, ROS and cell death was increased in hexaconazole treated plants.CLSM images revealed a concentration dependent increase in the characteristic green and blue fluorescence of hexaconazole treated roots. The application of B. japonicum strain RV9 alleviated the fungicide toxicity and improved the measured plant characteristics. Also,rhizobial cells were localized inside tissues as revealed by CLSM. Colonization of B.japonicum strain RV9 decreased the levels of CAT, POD, APX, GPX and TBARS by 80%, 5%,13%, 13% and 19%, respectively over plants grown at 80 μg/(hexaconazole·kg) soil. The ability to detoxify hexaconazole, colonize plant tissues, secrete PGP bioactive molecules even under fungicide pressure and its unique ability to diminish oxidative stress make B.japonicum an attractive choice for remediation of fungicide polluted soils and to concurrently enhance greengram production under stressed environment.  相似文献   
184.
185.
Co-composting of poultry manure and rubber wood sawdust was performed with the ratio of 2:1 (V/V) for a period of 60 days. An investigation was carried out to study the extracellular enzymatic activities and structural degradation utilizing Fourier transform infrared spectroscopy (FT-IR), thermogravimetry and differential thermal analysis (TG/DTA) and scanning electron microscopy (SEM). The microbial succession was also determined by using denaturing gel gradient electrophoresis (DGGE). The compost was able to reach its highest temperature of 71°C at day 3 and stabilized between 30 and 40°C for 8 weeks. CMCase, FPase and β-glucosidase acted synergistically in order to degrade the cellulosic substrate. The xylanase activities increased gradually during the composting and reached the peak value of 11.637 U/g on day 35, followed by a sharp decline. Both LiP and MnP activities reached their peak values on day 35 with 0.431 and 0.132 U/g respectively. The FT-IR spectra revealed an increase in aromaticity and a decrease in aliphatic compounds such as carbohydrates as decomposition proceeded. TGA/DTG data exhibited significant changes in weight loss in compost samples, indicating degradation of organic matter. SEM micrographs showed higher amounts of parenchyma exposed on the surface of rubber wood sawdust at day 60, showing significant degradation. DGGE and 16S rDNA analyses showed that Burkholderia sp., Pandoraea sp., and Pseudomonas sp. were present throughout the composting process. Ornithinibacillus sp. and Castellaniella ginsengisoli were only found in the initial stage of the composting, while different strains of Burkholderia sp. also occurred in the later stage of composting.  相似文献   
186.
187.
This study was aimed to establish background and reference values of total heavy metals in soils from a representative area of Albania (Tirana). Thirty-eight soil samples collected from genetic horizons of major soil types of Tirana were analyzed for important physicochemical properties by standard methods and for total contents of Cd, Cr, Ni, Pb, Zn, and Cu by atomic absorption spectrometer, after extraction with aqua regia. The results showed that the total contents of Cd, Cr, Ni, Pb, Zn, and Cu in surface horizons varied widely with respective mean values of 0.3 (??0.6), 174.2 (??63.7), 305.9 (??133.0), 19.7 (??12.4), 95.5 (??26.3), and 42.7 (??6.8) mg/kg. The highest metal contents were found in two soils developed in limestone. The depth distribution of metals showed a tendency for accumulation of Cd and Pb in the surface horizons of three soils, suggesting that these metals partially come from anthropogenic inputs. Correlation analysis indicated that the metal contents of soils were controlled by soil properties, including pH, CaCO3, clay, organic matter, cation exchange capacity, and Fe oxides. The background values (given as the 90th percentile) were much higher than those reported in the literature, showing that the levels of respective metals were naturally higher. The total metal contents of some soils were above background levels, suggesting metal pollution. The reference values for all the analyzed metals were quite consistent with those of the Dutch system. The proposed background and reference values can be used to evaluate the soil pollution with these elements.  相似文献   
188.

Background, aim, and scope  

Lead, a major contaminant, is highly used in paint manufacturing due to its anticorrosive properties. Recent reports indicated high lead content among Indian paints used for commercial purposes. Painters are continuously exposed to these lead containing paints during painting of both commercial as well as residential buildings. Lead is well-known for its genotoxicty in occupational workers; however, in Indian painters the genotoxic effects of lead have not been reported to date. Therefore we aimed to study the genotoxic end points in painters due to their long-term exposure to these high lead-containing Indian paints.  相似文献   
189.
Wetlands are among the most productive ecosystems on the earth. They produce various market and non-market goods and services, which have a significant role in human welfare. Despite the great opportunities from sustainable development, wetlands all over the world are under serious threat from a diverse range of non-sustainable activities. One of the major reasons for excessive depletion and the conversion of wetland resources is due to underestimating the non-market values of wetlands during development decisions. Shadegan International Wetland (SIW) in southern Iran is one of these wetland areas that is threatened by undervaluation and overexploitation from commercial activities. This study utilizes the contingent valuation method to estimate the economic benefits of SIW from the view point of peoples’ willingness to pay (WTP). The logit model was defined based on dichotomous choice to measure individuals’ WTP. The estimated mean WTP was US$ 1.74 per household as a onetime donation. This study concludes that the benefits of SIW to society could encourage managers to set priorities to ensure that the health of the ecosystem, its integrity, and its uniqueness would be conserved in a proper manner.  相似文献   
190.
The inclusion of both non-use values and values placed by non-users provide more reliable results about the real values of wetlands. A choice experiment method was conducted to estimate the willingness to pay for environmental conservation in non-users’ communities adjacent to the Shadegan International Wetland (SIW) in Iran. A random parameter logit (RPL) model was developed to derive the marginal value and compensating surplus of the respondents for five attributes of the non-market values of SIW. The trade-off between five different wetland attributes showed that water quality improvement and biodiversity conservation were the most highly valued attributes. The results demonstrated that about 66 % of non-users were willing to donate money for the contribution in SIW conservation, suggesting that non-users have the potential to contribute to SIW conservation programs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号