首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   131篇
  免费   3篇
安全科学   4篇
废物处理   6篇
环保管理   21篇
综合类   12篇
基础理论   63篇
环境理论   1篇
污染及防治   17篇
评价与监测   5篇
社会与环境   3篇
灾害及防治   2篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   4篇
  2016年   1篇
  2015年   2篇
  2014年   4篇
  2013年   14篇
  2012年   8篇
  2011年   10篇
  2010年   6篇
  2009年   8篇
  2008年   12篇
  2007年   11篇
  2006年   2篇
  2005年   1篇
  2004年   7篇
  2003年   7篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1997年   1篇
  1994年   3篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1984年   2篇
  1983年   1篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1971年   1篇
  1915年   1篇
排序方式: 共有134条查询结果,搜索用时 78 毫秒
31.
We equipped individual tiger (Galeocerdo cuvier Péron and Lesueur, 1822) and Galapagos (Carcharhinus galapagensis Snodgrass and Heller, 1905) sharks with both acoustic and satellite transmitters to quantify their long-term movements in the Papahanaumokuakea Marine National Monument (Northwestern Hawaiian Islands). Tiger sharks exhibited two broad patterns of behavior. Some individuals were detected at French Frigate Shoals (FFS) year round, whereas others visited FFS atoll in summer to forage on fledging albatross, then swam thousands of kilometers along the Hawaiian chain, or out into open ocean to the North Pacific transition zone chlorophyll front, before returning to FFS in subsequent years. These patterns suggest tiger sharks may use cognitive maps to navigate between distant foraging areas. Different patterns of spatial behavior may arise because cognitive maps are built up through individual exploration, and each tiger shark learns a unique combination of foraging sites. Galapagos shark detections were all associated with FFS, suggesting these sharks may be more resident around oceanic islands. Both Galapagos and tiger sharks primarily used the mixed layer (<100 m depth) and made occasional deeper dives through the thermocline down to 680 m. Results show reef-associated sharks utilize a wide variety of habitats ranging from shallow atoll lagoons to deep reefs and open ocean and may provide important trophic links between these habitats.  相似文献   
32.
Ling Ong  Kim N. Holland 《Marine Biology》2010,157(6):1313-1323
Parrotfishes can be significant bioeroders and sediment producers on coral reefs. We quantified the bioerosion rates of two similarly sized Hawaiian parrotfishes with two different feeding modes (Scarus rubroviolaceus—a scraper and Chlorurus perspicillatus—an excavator). The results showed that feeding modes did not affect bioerosion rates but that bioerosion rates were size dependent, with largest individuals (S. rubroviolaceus 45–54 cm FL) bioeroding up to 380 ± 67 kg ind−1 year−1. The size for onset of bioerosion capabilities for both species was 15 cm. Grazing by the two species consumed 60% of the carbonate production of the fore reef area, suggesting that large parrotfishes in Hawaii are ecologically important bioeroders. As individual large S. rubroviolaceus contributed disproportionately more to bioerosion and sediment production than the equivalent biomass of smaller conspecifics, management strategies designed to retain normal reef bioerosion rates should seek to preserve the historical size structure of S. rubroviolaceus populations and to especially protect the larger size classes.  相似文献   
33.
34.
35.
Phosphorus (P) loading from nonpoint sources, such as agricultural landscapes, contributes to downstream aquatic ecosystem degradation. Specifically, within the Mississippi watershed, enriched runoff contributions have far-reaching consequences for coastal water eutrophication and Gulf of Mexico hypoxia. Through storm events, the P mitigation capacity of agricultural drainage ditches under no-till cotton was determined for natural and variable rainfall conditions in north Mississippi. Over 2 yr, two experimental ditches were sampled monthly for total inorganic P concentrations in baseflow and on an event-driven basis for stormflows. Phosphorus concentrations, Manning's equations with a range of roughness coefficients for changes in vegetative densities within the ditches, and discharge volumes from Natural Resources Conservation Service dimensionless hydrographs combined to determine ranges in maximum and outflow storm P loads from the farms. Baseflow regressions and percentage reductions with P concentrations illustrated that the ditches alternated between being a sink and source for dissolved inorganic P and particulate P concentrations throughout the year. Storm event loads resulted in 5.5% of the annual applied fertilizer to be transported into the drainage ditches. The ditches annually reduced 43.92 +/- 3.12% of the maximum inorganic effluent P load before receiving waters. Agricultural drainage ditches exhibited a fair potential for P mitigation and thus warrant future work on controlled drainage to improve mitigation capacity.  相似文献   
36.
Abstract: For over 10 years, several species of salmon have been identified as either threatened or endangered in the Snake River Basin of Idaho. The United States Bureau of Reclamation, in cooperation with the National Marine Fisheries Service, has proposed a variety of plans to increase stream flows in the Snake River Basin to facilitate movement by juvenile salmon smolts to the ocean. This research examines two of the flow augmentation plans proposed by the Bureau of Reclamation as well as two alternative plans, one founded purely on existing priority‐based water rights and another geared toward minimizing the effects of flow augmentations on farms profitability. Results from a basin‐wide model of agricultural production in the Snake River Basin, the Snake River Agricultural Model, present evidence that (1) older water rights are used towards production of less valuable crops, (2) flow augmentation scenarios have unequal effects on farms profitability across agricultural regions within the basin, and (3) irrigation water is valued from US$4 to US$59 an acre‐foot.  相似文献   
37.
Six species of benthic diatoms and a natural benthic diatom community were cultured in flasks on a variety of sediments. Diatom species which secreted large quantities of mucilage were effective sediment stabilizers. These mucilage-secreting species significantly reduced resuspension and retarded laminar flow of the sediments when the culture flasks were agitated. Diatom species which secreted little or no mucilage were not effective sediment stabilizers. These non-mucilage-secreting species did not significantly effect resuspension or laminar flow of the sediments when the culture flasks were agitated. A sediment stabilizing mechanism based on the secretion of mucilage by pennate benthic diatoms is proposed. The effect such a process may have on distributional patterns of benthic invertebrates in areas where extensive diatom or other microalgal films occur is discussed.This work was supported by the Belle W. Baruch Foundation, and is Contribution No. 68 of the Belle W. Baruch Institute for Marine Biology and Coastal Research.  相似文献   
38.
Soil dissipation of the herbicide clopyralid (3,6-dichloropicolinic acid) was measured in laboratory incubations and in field plots under different management regimes. In laboratory studies, soil was spiked with commercial grade liquid formulation of clopyralid (Versatill, 300 g a.i. L(-1) soluble concentrate) @ 0.8 microg a.i. g(-1) dry soil and the soil water content was maintained at 60% of water holding capacity of the soil. Treatments included incubation at 10 degrees C, 20 degrees C, 30 degrees C, day/night cycles (25/15 degrees C) and sterilized soil (20 degrees C). Furthermore, a field study was conducted at the Waikato Research Orchard near Hamilton, New Zealand starting in November 2000 to measure dissipation rates of clopyralid under differing agricultural situations. The management regimes were: permanent pasture, permanent pasture shielded from direct sunlight, bare ground, and bare ground shielded from direct sunlight. Clopyralid was sprayed in dilute solution @ 600 g a.i. ha(-1) on to field plots. Herbicide residue concentrations in soil samples taken at regular intervals after application were determined by gas chromatograph with electron capture detector. The laboratory experiments showed that dissipation rate of clopyralid was markedly faster in non-sterilized soil (20 degrees C), with a half-life (t1/2) of 7.3 d, than in sterilized soil (20 degrees C) with t1/2 of 57.8 d, demonstrating the importance of micro-organisms in the breakdown process. Higher temperatures led to more rapid dissipation of clopyralid (t1/2, 4.1 d at 30 degrees C vs 46.2 d at 10 degrees C). Dissipation was also faster in the day/night (25/15 degrees C) treatment (t1/2, 5.4 d), which could be partly due to activation of soil microbes by temperature fluctuations. In the field experiment, decomposition of clopyralid was much slower in the shaded plots under pasture (t1/2, 71.5 d) and bare ground (t1/2, 23.9 d) than in the unshaded pasture (t1/2, 5.0 d) and bare ground plots (t1/2, 12.9 d). These studies suggest that environmental factors such as temperature, soil water content, shading, and different management practices would have considerable influence on rate of clopyralid dissipation.  相似文献   
39.
There is an urgent need to provide accurate air quality information and forecasts to the general public and environmental health decision-makers. This paper develops a hierarchical space–time model for daily 8-h maximum ozone concentration (O3) data covering much of the eastern United States. The model combines observed data and forecast output from a computer simulation model known as the Eta Community Multi-scale Air Quality (CMAQ) forecast model in a very flexible, yet computationally fast way, so that the next day forecasts can be computed in real-time operational mode. The model adjusts for spatio-temporal biases in the Eta CMAQ forecasts and avoids a change of support problem often encountered in data fusion settings where real data have been observed at point level monitoring sites, but the forecasts from the computer model are provided at grid cell levels. The model is validated with a large amount of set-aside data and is shown to provide much improved forecasts of daily O3 concentrations in the eastern United States.  相似文献   
40.
Size-resolved chemical compositions of non-refractory submicron aerosols were measured using a quadrupole Aerodyne aerosol mass spectrometer at a rural site near Guangzhou in the Pearl River Delta (PRD) of China in the summer of 2006. Two cases characterized as the outflows from the PRD urban region with plumes of high SO2 concentration were investigated. The evolution of sulfate size distributions was observed on a timescale of several hours. Namely mass concentrations of sulfate in the condensation mode (with vacuum aerodynamic diameters (Dva) < 300 nm) increased at a rate of about 0.17–0.37 ppbv h?1 during the daytime. This finding was consistent with the sulfuric acid production rates of about 0.17–0.3 ppbv h?1, as calculated from the observed gas-phase concentrations of OH (~3.3 × 106–1.7 × 107 cm?3) and SO2 (~3–21.2 ppbv). This implies that the growth of sulfate in the condensation mode was mainly due to gas-phase oxidation of SO2. The observed rapid increase was caused mainly by the concurrent high concentrations of OH and SO2 in the air mass. The evolution of the mass size distributions of m/z 44, a tracer for oxygenated organic aerosol (OOA), was very similar to that of sulfate. The mass loadings of m/z 44 were strongly correlated with those of sulfate (r2 = 0.99) in the condensation mode, indicating that OOA might also be formed by the gas-phase oxidation of volatile organic compound (VOC) precursors. It is likely that sulfate and OOA were internally mixed throughout the whole size range in the air mass.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号