首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   1篇
废物处理   7篇
环保管理   4篇
综合类   1篇
基础理论   1篇
污染及防治   4篇
评价与监测   1篇
灾害及防治   1篇
  2015年   1篇
  2014年   2篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2005年   3篇
  2002年   1篇
  2001年   1篇
  1972年   1篇
排序方式: 共有19条查询结果,搜索用时 703 毫秒
11.
The wide range of optimal values reported for the physical parameters of compost mixtures suggest that their interactive relationships should be investigated. The objective of this study was to examine the microbial O2 uptake rate (OUR) in 16 sludge waste recipes, offering a range of moisture content (MC), waste/bulking agent (W/BA) ratio and BA particle size levels determined using a central composite experimental design. The 3 kg samples were maintained at a constant temperature and aeration rate for 28 days, during which a respirometer recorded O2 uptake to provide a measure of microbial activity and biodegradability. The cumulative O2 consumption after 14 and 28 days was found to be significantly influenced by MC, W/BA ratio, BA particle size and the interaction between MC and W/BA ratio (p < 0.05). Using multivariate regression analysis, the experimental data was used to generate a model with good predictive ability for cumulative O2 consumption after 28 days as a function of the significant physical variables (R2 = 0.84). The prediction of O2 uptake by the model depended highly on the interaction between MC and W/BA ratio. A MC outside of the traditional 50–60% (wet basis) range still resulted in a high level of microbial O2 uptake as long as the W/BA ratio was adjusted to maintain a suitable O2 exchange in the sample. The evolution of OUR in the samples was also investigated, uncovering strong associations between short and long-term respirometric indices, such as peak OUR and cumulative O2 consumption (p < 0.005). Combining peak OUR data with cumulative O2 consumption after 14 days allowed for accurate predictions of cumulative O2 after 28 days of aeration (R2 = 0.96), implying that future studies need only run trials up to 14 days to evaluate the overall O2 consumption or biodegradability of similar sludge mixtures.  相似文献   
12.
Composting is a feasible biological treatment for the recycling of wastewater sludge as a soil amendment. The process can be optimized by selecting an initial compost recipe with physical properties that enhance microbial activity. The present study measured the microbial O2 uptake rate (OUR) in 16 sludge and wood residue mixtures to estimate the kinetics parameters of maximum growth rate μm and rate of organic matter hydrolysis Kh, as well as the initial biodegradable organic matter fractions present. The starting mixtures consisted of a wide range of moisture content (MC), waste to bulking agent (BA) ratio (W/BA ratio) and BA particle size, which were placed in a laboratory respirometry apparatus to measure their OUR over 4 weeks. A microbial model based on the activated sludge process was used to calculate the kinetic parameters and was found to adequately reproduced OUR curves over time, except for the lag phase and peak OUR, which was not represented and generally over-estimated, respectively. The maximum growth rate μm, was found to have a quadratic relationship with MC and a negative association with BA particle size. As a result, increasing MC up to 50% and using a smaller BA particle size of 8–12 mm was seen to maximize μm. The rate of hydrolysis Kh was found to have a linear association with both MC and BA particle size. The model also estimated the initial readily biodegradable organic matter fraction, MB0, and the slower biodegradable matter requiring hydrolysis, MH0. The sum of MB0 and MH0 was associated with MC, W/BA ratio and the interaction between these two parameters, suggesting that O2 availability was a key factor in determining the value of these two fractions. The study reinforced the idea that optimization of the physical characteristics of a compost mixture requires a holistic approach.  相似文献   
13.
14.
Abstract: To reduce the risk of surface and ground water pollution from nitrate, and in so doing improve the quality of receiving waters, better management options for land application of wastewater must be explored. In order to determine proper and environmentally safe wastewater land application methods, different application scenarios were simulated in this study to determine the fate and transport of nitrogen in sand‐filled field lysimeters. The Leaching Estimation and CHemistry Model for Nutrients (LEACHN) model was used to assess alternative wastewater land application scenarios: applications of low‐, medium‐, or high‐N concentration wastewaters, at different rates (0.06, 0.19, 0.31, or 0.6 m3/m2/day), under continuous or intermittent application. In the simulations, the NO3?‐N levels decreased in the leachate with an increase in wastewater application rates, due to enhanced denitrification in the upper anoxic zone of the soil generated under high flow rates. With low‐N concentrated wastewater, under all tested flow rates, the NO3?‐N levels in the leachate were below the permissible limit. When medium‐N wastewater was applied, the NO3?‐N level in leachate from the highest flow rate was below the permissible limit. Therefore, wastewater with low‐N concentrations, about 10 and 0.5 mg/l NO3?‐N and NH4+‐N, may be continuously applied to soil at all tested flow rates, with minimal nitrate pollution problems. Medium and high‐N concentrated wastewaters increased nitrate levels in the leachate, as compared to their levels in the low‐N concentrated wastewater. It appears that while low‐N wastewater can be safely applied to land without much nitrate leaching problems, the application of medium and high‐N wastewater could pose nitrate pollution problems. The simulation with intermittent application of low‐, medium‐, and high‐N concentrated wastewater at different rates showed a 51‐89% greater reduction in NO3?‐N levels in the leachate, than for continuous application under all tested wastewater N‐levels and flow rates. Also, the levels of NO3?‐N in their leachates were below the permissible limit. Therefore, wastewater with high levels of nitrogenous compounds (up to 54 NO3‐N mg/l) could be treated through an intermittent application to land.  相似文献   
15.
The effect of surfactant alkyl chain length on soil Cd desorption was studied using nonionic surfactants of polyethylene oxide (PEO) of PEO chain lengths of 7.5 (Triton X-114), 9.5 (Triton X-100), 30 (Triton X-305), or 40 units (Triton X-405) in combination with the I- ligand. Triplicate 1 g soil samples were equilibrated with 15 ml of surfactant-ligand mixture, at concentrations of 0.025, 0.50 or 0.10, and 0.0, 0.168 or 0.336 mol/l, respectively. After shaking the samples for 24 h, the supernatant fraction was analyzed for Cd content to determine the percent of Cd desorbed from the soil. After five successive washings, 53%, 40% and 25% of Cd had been desorbed by 0.025, 0.050 or 0.10 mol/l of Triton X-114, respectively, in the presence of 0.336 mol/l of I-, whereas with the same conditions, Triton X-100 desorbed 61%, 57% and 56% Cd and either Triton X-305 or Triton X-405 desorbed 51, 40 and 14 to 16% Cd. The most efficient Cd desorption was obtained using 0.025 mol/l Triton X-100 in admixture with 0.336 mol/l I-. Increased surfactant concentration was detrimental to Cd desorption consistent with a process that blocked ligand access to the soil particle surface. After 5 washings,the cumulative cadmium desorption decreased with increasing surfactant alkyl chain length, indicating that the metal-ligand complexes are preferably stabilized by the micelles' hydrophobic octyl phenyl (OP) group rather than by the hydrophilic PEO group. In the absence of ligand, the surfactants alone desorbed less than 1% Cd from the contaminated soil, suggesting that the ligand, rather than the surfactant, extracts the metal, to be subsequently stabilized within the surfactant micelles.  相似文献   
16.
To evaluate the environmental risks of irrigating crops with treated wastewater, a study was undertaken to quantify heavy metal uptake by 4-week old buckwheat (Fagopyrum esculentum L.) plants during 18 days of irrigation with 8 different Cu and Zn solutions under two transpiration rates (TR). At 4 weeks, potted buckwheat plants were transferred into one of the two growth chambers, offering either a high or low vapour pressure deficit (VDP) for, respectively, a high or low TR. Triplicate pots received one of the 8 irrigation treatments containing one of two Zn levels (0 and 25 mg/L) combined with one of four Cu levels (0, 5, 10 and 15 mg/L). Daily TR were measured by weighing the evapo-transpired water lost from the planted pot, less was the evaporation loss measured from triplicate non-planted pots. After 0, 6, 12 and 18 days of treatment, the stems and leaves of three randomly selected plants were harvested and after 18 days, the roots were harvested to determine Cu and Zn uptake. The treatments did not affect TR in terms of dry plant mass, indicating the absence of toxic effects. Irrigating with Zn, without Cu, increased dry biomass production, whereas the lowest biomass occurred with 15 and 30 mg/L of Cu with and without 25 mg/L of Zn, respectively, because higher applications of heavy metal significantly reduced soil pH. Plant Cu and Zn uptake increased with TR. With higher levels of Cu, Zn uptake by buckwheat was significantly reduced, while Zn had a slight but non-significant impact on Cu uptake. Previously and in a study exposing wheat plants to the same conditions, Cu significantly increased Zn uptake, while Zn had a slight but insignificant negative effect on Cu uptake. The buckwheat roots contained the greatest levels of Cu and Zn, indicating their role in moderating heavy metal uptake. Also, both Cu and Zn had a synergetic effect on each other in terms of root levels, and a similar observation was made in the earlier similar experiment using wheat plants. Irrigating a buckwheat crop with treated wastewater, with more natural Cu and Zn levels of 0.08 mg/L, could be quite beneficial without endangering the quality of the crop and acidifying the soil pH. The most concentrated experimental solutions contained 300 times more Cu and Zn, to obtain measurable differences.  相似文献   
17.
To evaluate the environmental risk of irrigating crops with treated wastewater, an experiment was conducted using two growth chambers, each offering a different vapour pressure deficit (VPD) for high and low transpiration rates (TR), respectively. One of the two sets of 24 pots planted with 6 week old wheat (Triticum aestivum L.), was placed in each growth chamber, and irrigated in triplicates for 20 days with 8 Zn and Cu solutions (0 and 25 mg Zn/L combined with 0, 5, 15 and 30 mg Cu/L). Water losses from planted and non-planted pots served to measure evapo-transpiration and evaporation, respectively. Pots were monitored for Cu and Zn uptake by collecting three plants (shoot and grain)/pots after 0, 10 and 20 days, and roots in each pot after 20 days, and analyzing these plant parts for dry mass, and Cu and Zn levels. Transpiration rate was not affected by any Cu/Zn treatment, but Cu and Zn uptake increase with the time, irrigation solution level and higher TR, with the roots retaining most Cu and Zn, compared to the shoot followed by the grain. For the shoot and grain, Cu had a significant synergetic effect on Zn uptake, when Zn had slight but insignificant antagonistic effects on Cu uptake. For the roots, Cu and Zn had significant synergetic effect on each other. Regression equations obtained from the data indicate that Cu and Zn levels normally found in treated wastewater (0.08 mg/L) are 300 times lower than those used for the most concentrated experimental solutions (30 and 25 mg/L, respectively) and may, on a long term basis, be beneficial rather than toxic to wheat plants and do not acidify soil pH.  相似文献   
18.
As opposed to mesophilic, thermophilic anaerobic digestion of food waste can increase the biogas output of reactors. To facilitate the transition of anaerobic digesters, this paper investigated the impact of adapting mesophilic sludge to thermophilic conditions. A 5L bench scale reactor was seeded with mesophilic granular sludge obtained from an up-flow anaerobic sludge blanket digester. After 13 days of operation at 35 degrees C, the reactor temperature was instantaneously increased to 55 degrees C and operated at this temperature until day 21. The biomass was then fed food waste on days 21, 42 and 63, each time with an F/M (Food/Microorganism) ratio increasing from 0.12 to 4.43 gVS/gVSS. Sludge samples were collected on days 0, 21, 42 and 63 to conduct substrate activity tests, and reactor biogas production was monitored during the full experimental period. The sludge collected on day 21 demonstrated that the abrupt temperature change had no pasteurization effect, but rather lead to a biomass with a fermentative activity of 3.58 g Glucose/gVSS/d and a methanogenic activity of 0.47 and 0.26 g Substrate/gVSS/d, related respectively, to acetoclastic and hydrogenophilic microorganisms. At 55 degrees C, an ultimate gas production (Go) and a biodegradation potential (Bo) of 0.2-1.4 L(STP)/gVS(fed) and of 0.1-0.84 L(STP) CH(4)/gVS(fed) were obtained, respectively. For the treatment of food waste, a fully adapted inoculum was developed by eliminating the initial time-consuming acclimatization stage from mesophilic to thermophilic conditions. The feeding stage was initiated within 20 days, but to increase the population of thermophilic methanogenic microorganisms, a substrate supply program must be carefully observed.  相似文献   
19.
ABSTRACT: Riparian areas interact with aquatic and upland conditions and therefore help determine the degree of functionality (streambank stability, shade, sediment, and debris filtering) found in a watershed or catchment. Thus, conditions in riparian areas exert significant influence on water quality. Physical and biological factors (biophysical determinants) that influence these conditions and determine long‐term site ecology include topographic variables, geology, climate, soil texture, and others. These conditions are further modified by management infrastructure (roads, dikes, etc.). Our objective was to develop a system for evaluating site condition in relation to site capability. Since biophysical determinants and infrastructure interact with water quality, our first task was to acquire data concerning the spatial distribution of biophysical determinants and infrastructure constraints and to import them into a GIS system where they could be managed and processed. To expedite analysis, determinants and infrastructure constraints were placed into a hierarchy capable of isolating various site capability types. The hierarchy was designed to incorporate multiscale effects. Site capability areas are georeferenced in this process thereby enabling efficient monitoring and providing a way to focus management on those areas needing improvement. Study tasks included: (1) landscape characterization and hierarchy selection, (2) field assessment, (3) information management and data mining, and (4) information interpretation and adaptive management. This approach appears to be an effective way to isolate general ripananstandardsmaycon site conditions, to provide indications about water quality, and to create strategies necessary for alleviating water quality problems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号