首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9654篇
  免费   0篇
  国内免费   2篇
安全科学   1篇
废物处理   775篇
环保管理   1207篇
综合类   938篇
基础理论   3109篇
污染及防治   1725篇
评价与监测   1006篇
社会与环境   895篇
  2023年   1篇
  2021年   2篇
  2019年   1篇
  2018年   1473篇
  2017年   1371篇
  2016年   1194篇
  2015年   123篇
  2014年   16篇
  2013年   10篇
  2012年   461篇
  2011年   1338篇
  2010年   689篇
  2009年   596篇
  2008年   880篇
  2007年   1226篇
  2006年   1篇
  2005年   18篇
  2004年   33篇
  2003年   61篇
  2002年   98篇
  2001年   14篇
  2000年   10篇
  1999年   2篇
  1998年   9篇
  1997年   1篇
  1996年   2篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1988年   2篇
  1984年   11篇
  1983年   8篇
  1935年   2篇
排序方式: 共有9656条查询结果,搜索用时 15 毫秒
101.
102.
Vast amounts of co-streams are generated from plant and animal-based food processing industries. Efficient utilization of these co-streams is important from an economic and environmental perspective. Non-utilization or under-utilization of co-streams results in loss of potential revenues, increased disposal cost of these products and environmental pollution. At present, extensive research is taking place around the globe towards recycling of co-streams to generate value-added products. This review evaluates various co-streams from food processing industries as raw materials in developing biodegradable agricultural mulching applications. Among the agriculture-based co-streams, potato peels, tomato peels, carrot residues, apple pomace, coffee residues and peanut residues were reviewed with respect to production amount, composition, film forming components and film forming capabilities. Similarly, selected co-streams from slaughterhouses, poultry and fish processing industries were also reviewed and evaluated for the same purpose.  相似文献   
103.
The global demand of bioplastics has lead to an exponential increase in their production commercially. Hence, biodegradable nature needs to be evaluated in various ecosystems viz. air, water, soil and other environmental conditions to avoid the polymeric waste accumulation in the nature. In this paper, we investigated the progressive response of two indigenously developed bacterial consortia, i.e., consortium-I (C-I: Pseudomonas sp. strain Rb10, Pseudomonas sp. strain Rb11 and Bacillus sp. strain Rb18), and consortium-II (C-II: Lysinibacillus sp. strain Rb1, Pseudomonas sp. strain Rb13 and Pseudomonas sp. strain Rb19), against biodegradation behavior of polyhydroxybutyrate (PHB) film composites, under natural soil ecosystem (in net house). The biodegraded films recovered after 6 and 9 months of incubation were analyzed through Fourier transform infrared spectroscopy and scanning electron microscopy to determine the variations in chemical and morphological parameters (before and after incubation). Noticeable changes in the bond intensity, surface morphology and conductivity were found when PHB composites were treated with C-II. These changes were drastic in case of blends in comparison to copolymer. The potential isolates not only survived, but, also, there was a significant increase in bacterial diversity during whole period of incubation. To the best of our knowledge, it is the first report which described the biodegradation potential of Lysinibacillus sp. as a part of C-II with Pseudomonas sp. against PHB film composites.  相似文献   
104.
Scientific and technological researches are devoted to obtain materials capable of retaining different kinds of pollutants, contributing to contamination solutions. In this context, hydrogels have emerged as great candidates because of their excellent absorption properties as well as good mechanical, thermal and chemical properties. More specifically, ferrogels (magnetic gels) present the extra advantage of being easily manipulated by a permanent magnet. Here, we present the results derived from the application of ferrogels as efficient tools to extract heavy metal pollutants from wastewater samples. The gels were prepared following the method of freezing and thawing of a polyvinyl alcohol aqueous solution with magnetic nanoparticles coated with polyacrylic acid. Ferrogels were fully characterized and their ability to retain Cu2+ and Cd2+, as model heavy metals, was studied. Thus kinetics and mechanisms of adsorption were evaluated and modeled. The concentration of MNPs on the PVA matrix was key to improve the adsorption capability (approximately the double of retention is improved by the MNPs addition). The adsorption kinetics was determined as pseudo-second order model, whereas the Langmuir model was the most appropriate to explain the behavior of the gels. Finally reuse ability was evaluated to determine the real potential of these materials, the ferrogels demonstrated high efficiency up to about five cycles, retaining about 80–90% of their initial adsorption capability. All the results indicated that the materials are promising candidates able to compete with the commercial technology regarding to water remediation.  相似文献   
105.
Surface treated macro and nanoparticle TiO2 samples have been prepared, characterised and their efficiency as UV blockers evaluated in clear coatings and paints. The particle size of the ‘base’ TiO2 has been optimised to block UV radiation and the surface treatment developed to deactivate the photocatalytic activity of the surface of the TiO2 particles. The resultant UV blockers have been evaluated in both solvent and water-based clear coatings. Nanoparticle TiO2 has been prepared from ‘seed’ and the particle size was controlled by calcination. It was found that the choice of particle size is a compromise between UVA absorption, UVB absorption, visible transmission and photoactivity. It has been demonstrated that TiO2 with a crystallite size of 25 nm yields a product with the optimum properties. A range of dispersants was successfully used to disperse and mill the TiO2. Both organic and inorganic dispersants were used; 2-amino-2-methyl-1-propanol and 1-amino-2-propanol (MIPA) and P2O5 and Na2SiO3 respectively. The surface of the nano-TiO2 was coated with mixed oxides of silicon, aluminium, zirconium and phosphorous. Addition of the resultant coated nano-rutiles to an Isocyanate Acrylic clear coating prolonged the lifetime of that coating compared to the blank. Generally, a surface treatment based on SiO2, Al2O3 and P2O5 was more successful than one based on ZrO2, Al2O3 and P2O5. Higher addition levels of the surface treatment were beneficial for protecting the polymeric coating. The UV blocker products were also evaluated in a water-based acrylic, first a water-based dispersion of the UV blocker was prepared before addition to the acrylic. The dispersions and resultant acrylic thin films were evaluated using UV/Vis spectroscopy and durability assessed. The ratio of absorbance at 300:500 nm for the water-based dispersion was shown to be a good predictor of both the transparency of the resultant acrylic thin film and the durability of that film, in terms of weight loss. Macro grade titanium dioxide pigments were also prepared and coated with treatments of silica, alumina and siloxane and their photo-stabilising activity in alkyd paint film assessed and found to be directly related to the electron–hole pair mobility and trapping as determined by micro-wave spectroscopy.  相似文献   
106.
In this study the possibility of poly (3-hydroxybutyrate) production from glycerol was investigated and optimized by Halorcula sp. IRU1, a novel archaea isolated from Urmia lake, Iran in batch experiments. Using Taguchi methodology, three important independent parameters (glycerol, yeast extract and KH2PO4) were evaluated for their individual and interactive effects on poly (3-hydroxybutyrate) production. It was shown that the glycerol concentration was the most significant factor affecting the yield of poly (3-hydroxybutyrate). The optimum factor levels were a glycerol concentration of 8% (v/v), yeast extract 0.8% (w/v) and KH2PO4 0.002% (w/v). The predicted value obtained for poly (3-hydroxybutyrate) production under these conditions was about 81.87%. We can conclude that Haloarcula sp. IRU1 has a high potential for synthesis of poly (3-hydroxybutyrate) from glycerol.  相似文献   
107.
    
For an effective decomposition and removal of organic halogenated compounds, a packed-bed non-thermal plasma reactor with in situ absorption of the resulting halogenated products by alkaline sorbent incorporated was proposed. In the plasma reactor, α-Al2O3 particles of 1 and 3 mm (mean particle diameter) were packed as solid dielectric medium to enhance the plasma power density in the reactor. Further, alkaline sorbent of Ca(OH)2 was doped onto the surface of α-Al2O3 particles, in order to remove halogenated products by in situ absorption with Ca(OH)2. A high-voltage and high-frequency pulsed power of −15 to 15 kV and 1 kHz was applied to the wire electrode of the plasma reactor by means of a DC power source. In the present study, as the sample of an organic halogenated compound that is most popularly used, we selected dichloromethane (CH2Cl2), and 500 ppm of the initial concentration of CH2Cl2 was fed into the reactor accompanied by air at a fixed flow rate of 500 × 10−6 m3 min−1 at room temperature. As a result, it was recognized that the amount of CH2Cl2 decomposed by non-thermal plasma in an α-Al2O3 particle bed increased with an increase in plasma input power. The ratio of decomposition of CH2Cl2 was almost 100% at 13 kV of electric power and 1 kHz frequency, and CO2, CH3Cl, COCl2, HCl, and Cl2 were observed as the major reaction products. On the other hand, when CH2Cl2 was introduced into the plasma reactor where α-Al2O3 particles doped with Ca(OH)2 were packed, the ratio of decomposition of CH2Cl2 became higher, compared to the case that α-Al2O3 particles were not doped with Ca(OH)2. Moreover, there were no halogenated by-product gases detected in the outlet gas from the reactor. As the solid reaction products, CaClOH and Ca(ClO)2·4H2O were detected on Ca(OH)2 by X-ray diffraction. From these findings, it was recognized that CH2Cl2 was decomposed more effectively without producing unwanted harmful halogenated by-products in the proposed non-thermal plasma reactor where α-Al2O3 particles doped with Ca(OH)2 sorbent were packed.  相似文献   
108.
Ash produced from the combustion of livestock manure contains large amounts of phosphorus (P), which is an important resource as a fertilizer. Some studies have extracted and recovered P from incinerated biomass ash using inorganic acid or alkaline agents, which produce wastewater that requires treatment and is expensive due to the cost of chemicals. Livestock manure ash contains not only P, but also water soluble salts, which could be a negative influence on plant growth and shall be preferably removed from the recovered fertilizer. In this study, we removed salinity from cattle manure incineration ash by simple aqueous leaching, while retaining the P content. The optimal condition was a 20 min leaching time at a liquid/solid (L/S) ratio of 10 mL g-ash?1. Under this condition, over 90 % of Cl and 20 % of Na in the original ash was removed, while over 99 % of the P was retained in the leached residue. The leached residue met the fertilizer standard in Japan in terms of citrate soluble fertilizer components and contained few heavy metals. X-ray analyses of the ash indicated that Cl was mainly present as KCl in the original ash, while P was mainly present as Ca compounds in the ash.  相似文献   
109.
With the rapid economic development in China, the amount of plastic waste (PW) generated has greatly increased and much of the waste is currently not treated. To reduce greenhouse gas (GHG) emissions from recycling of PW, we estimated the PW flow and considered methods to improve the household PW recycling system in Tianjin by adjusting processes during transportation and establishing a PW recycling factory in Zi’ya Industrial Park. The goal of the study was to identify reasonable improvements for the recycling system and clarify the environmental load. Geographic information system (GIS) technology was used to simulate transport processes for comparing GHG emissions from the transport processes between the present case and an improved case. Life cycle assessment (LCA) was used to compare GHG emissions between a projected scenario and a baseline scenario. Estimated GHG emissions during transport processes in the improved case were reduced by about 12,197 t CO2 eq per year compared to the present case, equivalent to about 65.9 % of the total emissions in the present case. GHG emissions in the projected scenario were about 101,738 t CO2 eq less per year than the baseline scenario, equivalent to about 75.5 % of the total emissions in the baseline scenario.  相似文献   
110.
The objective of this work was to isolate cellulose nanocrystal (CNC) from oil palm fronds (Elaeis guineensis) and its subsequent characterization. Isolation involves sodium hydroxide/anthraquinone pulping with mechanical refining followed by total chlorine free bleaching (includes oxygen delignification, hydrogen peroxide oxidation and peracetic acid treatment) before acid hydrolysis. Bleaching significantly decreased kappa number and increased α-cellulose percentage of fibers as confirmed by Technical Association of the Pulp and Paper Industry standards. Transmission electron microscopy (TEM), X-ray diffraction, Fourier transform infrared spectroscopy and thermogravimetric analysis revealed that acid hydrolysis along with bleaching improved crystallinity index and thermal stability of the extracted nanocrystals. It was observed that CNC maintained its cellulose 1 polymorph despite hydrolysis treatment. Mean diameter as observed by TEM and average fiber aspect ratio of obtained CNC was 7.44 ± 0.17 nm and 16.53 ± 3.52, respectively making it suitable as a reinforcing material for nanocomposite.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号