首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3018篇
  免费   42篇
  国内免费   25篇
安全科学   163篇
废物处理   154篇
环保管理   612篇
综合类   334篇
基础理论   726篇
环境理论   5篇
污染及防治   755篇
评价与监测   212篇
社会与环境   106篇
灾害及防治   18篇
  2023年   21篇
  2022年   37篇
  2021年   26篇
  2020年   21篇
  2019年   31篇
  2018年   68篇
  2017年   67篇
  2016年   89篇
  2015年   58篇
  2014年   84篇
  2013年   280篇
  2012年   143篇
  2011年   177篇
  2010年   121篇
  2009年   122篇
  2008年   154篇
  2007年   187篇
  2006年   152篇
  2005年   105篇
  2004年   104篇
  2003年   116篇
  2002年   89篇
  2001年   67篇
  2000年   46篇
  1999年   51篇
  1998年   38篇
  1997年   43篇
  1996年   44篇
  1995年   40篇
  1994年   41篇
  1993年   34篇
  1992年   37篇
  1991年   26篇
  1990年   29篇
  1989年   19篇
  1988年   13篇
  1987年   20篇
  1986年   25篇
  1985年   17篇
  1984年   18篇
  1983年   28篇
  1982年   28篇
  1981年   25篇
  1980年   19篇
  1979年   16篇
  1977年   11篇
  1976年   9篇
  1975年   9篇
  1974年   10篇
  1971年   11篇
排序方式: 共有3085条查询结果,搜索用时 464 毫秒
221.
An important issue of concern for permeable reactive iron barriers is the long-term efficiency of the barriers due to the long operational periods required. Mineral precipitation resulting from the anaerobic corrosion of the iron filings and bacteria present in the barrier may play an important role in the long-term performance. An integrated study was performed on the Vapokon permeable reactive barrier (PRB) in Denmark by groundwater and iron core sample characterization. The detailed field groundwater sampling carried out from more than 75 well screens up and downstream the barrier showed a very efficient removal (>99%) for the most important CAHs (PCE, TCE and 1,1,1-TCA). However, significant formation of cis-DCE within the PRB resulted in an overall insufficient efficiency for cis-DCE removal. The detailed analysis of the upstream groundwater revealed a very heterogeneous spatial distribution of contaminant loading into the PRB, which resulted in that only about a quarter of the barrier system is treating significant loads of CAHs. Laboratory batch experiments using contaminated groundwater from the site and iron material from the core samples revealed that the aged iron material performed equally well as virgin granular iron of the same type based on determined degradation rates despite that parts of the cored iron material were covered by mineral precipitates (especially iron sulfides, carbonate green rust and aragonite). The PCR analysis performed on the iron core samples indicated the presence of a microbial consortium in the barrier. A wide range of species were identified including sulfate and iron reducing bacteria, together with Dehalococcoides and Desulfuromonas species indicating microbial reductive dehalogenation potential. The microbes had a profound effect on the performance of the barrier, as indicated by significant degradation of dichloromethane (which is typically unaffected by zero valent iron) within the barrier.  相似文献   
222.
The shrink-swell behavior of active clays in response to changes in physicochemical conditions creates great challenges for construction of geotechnical barriers for hazardous waste isolation, and is of significant importance for management of agricultural and natural resources. Initiation and evolution of desiccation cracks in active clays are strongly dependent on physicochemical initial and boundary conditions. To investigate effects of bentonite content (20, 40, 60%), pore fluid chemistry (0.05 and 0.5M NaCl) and drying rates (40 and 60°C) on cracking behavior, well-controlled dehydration experiments were conducted and X-ray Computed Tomography (CT) was applied to visualize and quantify geometrical features of evolving crack networks. A stochastic model based on the Fokker-Plank equation was adopted to describe the evolution of crack aperture distributions (CAD) and to assess the impact of physicochemical factors on cracking behavior. Analyses of crack porosity and crack specific surface area showed that both clay content and temperature had larger impact on cracking than pore fluid concentration. More cracks formed at high bentonite contents (40 and 60%) and at high drying rate (60°C). The drift, diffusion and source terms derived from stochastic analysis indicated that evaporative demand had greater influence on the dynamics of the CAD than solution chemistry.  相似文献   
223.
In this field study, two approaches to assess contaminant mass discharge were compared: the sampling of multilevel wells (MLS) and the integral groundwater investigation (or integral pumping test, IPT) that makes use of the concentration-time series obtained from pumping wells. The MLS approached used concentrations, hydraulic conductivity and gradient rather than direct chemical flux measurements, while the IPT made use of a simplified analytical inversion. The two approaches were applied at a control plane located approximately 40m downgradient of a gasoline source at Canadian Forces Base Borden, Ontario, Canada. The methods yielded similar estimates of the mass discharging across the control plane. The sources of uncertainties in the mass discharge in each approach were evaluated, including the uncertainties inherent in the underlying assumptions and procedures. The maximum uncertainty of the MLS method was about 67%, and about 28% for the IPT method in this specific field situation. For the MLS method, the largest relative uncertainty (62%) was attributed to the limited sampling density (0.63 points/m(2)), through a novel comparison with a denser sampling grid nearby. A five-fold increase of the sampling grid density would have been required to reduce the overall relative uncertainty for the MLS method to about the same level as that for the IPT method. Uncertainty in the complete coverage of the control plane provided the largest relative uncertainty (37%) in the IPT method. While MLS or IPT methods to assess contaminant mass discharge are attractive assessment tools, the large relative uncertainty in either method found for this reasonable well monitored and simple aquifer suggests that results in more complex plumes in more heterogeneous aquifers should be viewed with caution.  相似文献   
224.
Black carbon (BC) and total organic carbon (TOC) were quantified in the surface soils of Switzerland (N = 105) and Delhi (N = 36), India, to examine their relationships with contents of polycyclic aromatic hydrocarbons (PAH). BC content in Swiss (background) soils (N = 104) varied from 0.41 to 4.75 mg/g (median: 1.13 mg/g) and constituted 1-9% (median: 3%) of TOC. Indian (urban) soils had similar BC concentrations (0.37-2.05 mg/g, median: 1.19 mg/g), with relatively higher BC/TOC (6-23%, median: 13%). Similar to TOC, BC showed significant positive correlation with lighter PAH, but no correlation with heavier PAH in Swiss soils. In contrast, heavier PAH were significantly correlated only with BC in Delhi soils. It seems that TOC governs the distribution of PAH in organic matter rich background soils, while the proximity to emission sources is reflected by BC-PAH association in urban soils.  相似文献   
225.
Methane is an important greenhouse gas emitted from landfill sites and old waste dumps. Biological methane oxidation in landfill covers can help to reduce methane emissions. To determine the influence of different plant covers on this oxidation in a compost layer, we conducted a lysimeter study. We compared the effect of four different plant covers (grass, alfalfa + grass, miscanthus and black poplar) and of bare soil on the concentration of methane, carbon dioxide and oxygen in lysimeters filled with compost. Plants were essential for a sustainable reduction in methane concentrations, whereas in bare soil, methane oxidation declined already after 6 weeks. Enhanced microbial activity - expected in lysimeters with plants that were exposed to landfill gas - was supported by the increased temperature of the gas in the substrate and the higher methane oxidation potential. At the end of the first experimental year and from mid-April of the second experimental year, the methane concentration was most strongly reduced in the lysimeters containing alfalfa + grass, followed by poplar, miscanthus and grass. The observed differences probably reflect the different root morphology of the investigated plants, which influences oxygen transport to deeper compost layers and regulates the water content.  相似文献   
226.
The composition of household waste in Greenland was investigated for the first time. About 2 tonnes of household waste was sampled as every 7th bag collected during 1 week along the scheduled collection routes in Sisimiut, the second largest town in Greenland with about 5400 inhabitants. The collection bags were sorted manually into 10 material fractions. The household waste composition consisted primarily of biowaste (43%) and the combustible fraction (30%), including anything combustible that did not belong to other clean fractions as paper, cardboard and plastic. Paper (8%) (dominated by magazine type paper) and glass (7%) were other important material fractions of the household waste. The remaining approximately 10% constituted of steel (1.5%), aluminum (0.5%), plastic (2.4%), wood (1.0%), non-combustible waste (1.8%) and household hazardous waste (1.2%). The high content of biowaste and the low content of paper make Greenlandic waste much different from Danish household waste. The moisture content, calorific value and chemical composition (55 elements, of which 22 were below detection limits) were determined for each material fraction. These characteristics were similar to what has been found for material fractions in Danish household waste. The chemical composition and the calorific value of the plastic fraction revealed that this fraction was not clean but contained a lot of biowaste. The established waste composition is useful in assessing alternative waste management schemes for household waste in Greenland.  相似文献   
227.
An environmental assessment of six scenarios for handling of garden waste in the Municipality of Aarhus (Denmark) was performed from a life cycle perspective by means of the LCA-model EASEWASTE. In the first (baseline) scenario, the current garden waste management system based on windrow composting was assessed, while in the other five scenarios alternative solutions including incineration and home composting of fractions of the garden waste were evaluated. The environmental profile (normalised to Person Equivalent, PE) of the current garden waste management in Aarhus is in the order of −6 to 8 mPE Mg−1 ww for the non-toxic categories and up to 100 mPE Mg−1 ww for the toxic categories. The potential impacts on non-toxic categories are much smaller than what is found for other fractions of municipal solid waste. Incineration (up to 35% of the garden waste) and home composting (up to 18% of the garden waste) seem from an environmental point of view suitable for diverting waste away from the composting facility in order to increase its capacity. In particular the incineration of woody parts of the garden waste improved the environmental profile of the garden waste management significantly.  相似文献   
228.
The genus Enterobacter comprises a range of beneficial plant-associated bacteria showing plant growth promotion. Enterobacter ludwigii belongs to the Enterobacter cloacae complex and has been reported to include human pathogens but also plant-associated strains with plant beneficial capacities. To assess the role of Enterobacter endophytes in hydrocarbon degradation, plant colonization, abundance and expression of CYP153 genes in different plant compartments, three plant species (Italian ryegrass, birdsfoot trefoil and alfalfa) were grown in sterile soil spiked with 1% diesel and inoculated with three endophytic E. ludwigii strains. Results showed that all strains were capable of hydrocarbon degradation and efficiently colonized the rhizosphere and plant interior. Two strains, ISI10-3 and BRI10-9, showed highest degradation rates of diesel fuel up to 68% and performed best in combination with Italian ryegrass and alfalfa. All strains expressed the CYP153 gene in all plant compartments, indicating an active role in degradation of diesel in association with plants.  相似文献   
229.
The goal of this study was to develop a robust method of analyzing surface water samples for S-triazine herbicides, chloroacetanilide herbicides, and their transformation products (TPs) using solid-phase extraction (SPE) followed by liquid chromatograph-mass spectrometry (LC-MS) with electrospray ionization (ESI) by in-source collision-induced dissociation (ISCID) capability of an orthogonal electrospray ionization probe on a single quadrupole LC-MS system. The method developed here met the goals of the study and yielded estimated method detection limits (EMDLs) averaging 0.3 ± 0.1 ng L(-1) for S-triazines and their TPs and 0.7 ± 0.4 ng L(-1) for chloroacetanilides and TPs. Spiked filtered river water yielded SPE recoveries ranging from 94.2 % ± 4.8 % for S-triazines and TPs after eliminating three compounds with less that 65 % recovery from analysis and 95.9 % ± 19 % for chloroacetanilides and their TPs. The method was field-tested with filtered water samples collected from four sites over a four-month period. Detectible values of S-triazines and TPs ranged from 0.3 to 1540 ng L(-1) with a mean of 79.3 and a median of 19.4 ng L(-1). Detectible values for chloroacetanilides and TPs ranged from 0.31 to 3780 ng L(-1) with a mean of 252 and a median of 25.6 ng L(-1). An additional goal was to determine if the method was useful for microbial degradation studies using native bacterial communities. The bacteria transformed atrazine (2-chloro-4-ethylamino-6-isopropylamino-S-triazine) solely into 2-hydroxy atrazine (2-hydroxy-4-ethylamino-6-isopropylamino-S-triazine) with concentrations of 78.4, 63.3 and 32.5 ng L(-1) after 12 days of incubation compared with 6.3 and 7.1 ng L(-1) for control dark and control sunlight respectively.  相似文献   
230.
As a leading nutrient emitter, wastewater infrastructure harbors significant technical potentials to reduce the water-polluting emissions of phosphorus and nitrogen into the Elbe river basin. From the viewpoint of the central infrastructure, the effluent threshold value of urban wastewater treatment plants could be lowered further by advanced use of denitrification and membrane filtration, and storm water overflows of wastewater and contaminated rainwater from sewers could be treated in retention soil filters. In addition, small-scale wastewater treatment plants, infiltration and reducing or unsealing impervious surfaces could be used as decentralized elements of wastewater or storm water treatment. It can be shown that if the most advanced measures were applied in all wastewater-relevant areas, up to 60% of the phosphorus and 37% of the nitrogen emissions could be avoided. Alongside central wastewater treatment plants, small-scale treatment plants prove to be the most effective and cost-efficient option. To achieve an ecologically acceptable state of the Elbe, however, it may be necessary to employ more costly measures as well.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号