Humans have continuously interacted with natural systems, resulting in the formation and development of coupled human and natural systems (CHANS). Recent studies reveal the complexity of organizational, spatial, and temporal couplings of CHANS. These couplings have evolved from direct to more indirect interactions, from adjacent to more distant linkages, from local to global scales, and from simple to complex patterns and processes. Untangling complexities, such as reciprocal effects and emergent properties, can lead to novel scientific discoveries and is essential to developing effective policies for ecological and socioeconomic sustainability. Opportunities for truly integrating various disciplines are emerging to address fundamental questions about CHANS and meet society's unprecedented challenges. 相似文献
The 1999/31 Elemental Carbon Directive sets strict rules on the disposal of untreated municipal solid waste in the European Union countries and forces a reduction of the biodegradable quantities disposed off to landfills up to 35% of the amount produced in 1995 in the coming decade. More environmentally friendly waste management options shall be promoted under the framework of the Community Waste Strategy ([96] 399 Final). In this context, the production and thermal use of solid recovered fuels (SRFs), derived from nonhazardous bioresidues and mixed- and mono-waste streams, could be a key element in a future waste management system. Within the scope of the European Demonstration Project, RECOFUEL, SRF cocombustion was demonstrated in two large-scale lignite-fired coal boilers at RWE power station in Weisweiler, Germany. As a consequence of the high biogenic share of the cocombusted material, this approach can be considered beneficial following European Directive 2001/77/EC on electricity from renewable energy sources (directive). During the experimental campaign, the share of SRF in the overall thermal input was adjusted to approximately 2%, resulting into a feeding rate of approximately 25 t/hr. The measurement campaign included boiler measurements in different locations, fuel and ash sampling, and its characterization. The corrosion rates were monitored by dedicated corrosion probes. The overall results showed no significant influence of SRF cocombustion on boiler operation, emissions behavior, and residues quality for the thermal shares applied. Also, no effect of the increased chlorine concentration of the recovered fuel was observed in the flue gas path after the desulfurization unit. 相似文献
Despite the fact that creosote mainly consists of polycyclic aromatic hydrocarbons (PAHs), more polar compounds like phenolics, benzenes and N-, S-, O-heterocyclics dominate the groundwater downstream from creosote-contaminated sites. In this study, bioassay-directed fractionation, combined with fullscan GC-MS, identified organic toxicants in creosote-contaminated groundwater. An organic extract of creosote-contaminated groundwater was fractionated on a polar silica column using high performance liquid chromatography (HPLC), and the toxicity of the fractions was measured by the Microtox-bioassay. PAHs, which comprise up to 85% of pure creosote, accounted for only about 13% of total toxicity in the creosote-contaminated groundwater, while methylated benzenes, phenolics and N-heterocyclics accounted for ca. 80% of the measured toxicity. The fraction containing alkylated quinolines was the most toxic single fraction, accounting for 26% of the total measured toxicity. The results imply that focus on PAHs may underestimate risks associated with creosote-contaminated groundwater, and that environmental risk assessment should focus to a higher degree on substituted PAHs and phenolics because they are more toxic than the unsubstituted ones. Additionally, benzenes and N-heterocyclics (e.g., alkylated quinolines) should be assessed. 相似文献
In this study the fate of pharmaceuticals and personal care products which are irrigated on arable land with treated municipal wastewater was investigated. In Braunschweig, Germany, wastewater has been irrigated continuously for more than 45 years. In the winter time only the effluent of the sewage treatment plant (STP) of Braunschweig is used for irrigation, while during summer digested sludge is mixed with the effluent. In the present case study six wells and four lysimeters located in one of the irrigated agricultural fields were monitored with regard to the occurrence of 52 pharmaceuticals and two personal care products (PPCPs; e.g. betablockers, antibiotics, antiphlogistics, carbamazepine, musk fragrances, iodinated contrast media (ICM) and estrogens). No differences in PPCP pollution of the groundwater were found due to irrigation of STP effluents with and without addition of digested sludge, because many polar compounds do not sorb to sludge and lipophilic compounds are not mobile in the soil-aquifer. Most of the selected PPCPs were never detected in any of the lysimeter or groundwater samples, although they were present in the treated wastewater irrigated onto the fields. In the groundwater and lysimeter samples primarily the ICM diatrizoate and iopamidol, the antiepileptic carbamazepine and the antibiotic sulfamethoxazole were detected up to several mugl(-1), while the acidic pharmaceuticals, musk fragrances, estrogens and betablockers were likely sorbed or transformed while passing the top soil layer. Potential estrogenic effects are likely to disappear after irrigation, since the most potent steroid estrogens were not measurable. 相似文献
The organic toxicants present in the effluent of the main sewer of the city of Zagreb, Croatia were isolated and identified through the use of effects-directed characterisation techniques. At the time of investigation, the wastewater effluent received no treatment and was comprised of a mixture of effluent from domestic and industrial sources. The organic load of the wastewater was isolated by solid phase extraction and toxicity profiles obtained using reverse-phase HPLC. All procedures were evaluated through the analysis of a series of reference compounds of widely differing polarity. Toxicity profiles for EROD activity (CYP1A induction), vitellogenin induction (estrogenic activity), cytotoxicity (membrane stability and metabolic inhibition) were obtained using a rainbow trout (Oncorhynchus mykiss) primary hepatocyte bioassay. The suite of bioassays showed biological responses after exposure to the raw extracts for all the endpoints tested. However, a combination of mixture toxicity and cytotoxicity in the complex raw extract had some masking effect on the sub-lethal responses of vitellogenin and EROD induction. Bioassay testing of the fine fractions obtained by HPLC produced a range of endpoint-specific toxicity profiles for each sample. A number of compounds were identified by the use of GC-MS and LC-MS/MS as responsible for the observed effects. The steroid estrogens 17 beta-estradiol and estriol were identified by LC-MS/MS as estrogen receptor agonists in two of the estrogenic fractions. In addition, GC-MS analysis identified different alkylphenols, benzophenone and methylparaben which also contributed to the estrogenic activity of the sample. Polycyclic aromatic hydrocarbons (PAHs), alkyl substituted PAHs, nitro-polycyclic aromatic compounds (nitro-PACs), carbazoles and alkyl substituted carbazoles and other known CYP1A inducers were identified by GC-MS analysis as responsible for some of the observed EROD activity. Some active compounds remain unidentified. 相似文献
Selected results from the degradation of reactive-dye hydrolysates after UV irradiation, ozonation and sodium peroxodisulphate (NaPS) treatment are presented. Reactive dyes with representative chromophores and anchor groups were chosen for the research project. Different stages of oxidative decolourisation were examined and determined by water parameters for biological degradation (BOD). The paper focuses on toxicity tests with Pseudomonas putida to consider whether the oxidative treatments result in products with a risk for the environment. Tests were performed with the AQUALYTIC® Sensomat System, which measures biological oxygen demand (BOD). It was determined that the chosen oxidative treatments had as a rule no bearing on respiration of P. putida. Experiments with hydrolysates after short-term UV irradiation resulted in a slightly increased but not long-lasting toxicity in comparison with treatments with ozone or NaPS. Toxic effects were found in tests with hydrolysates of metalliferous dyes. During oxidative treatment, metals were liberated from the chromophores. This did cause complete inhibition of respiration of P. putida. Dye Blue E, a member of a dye class with chlorotriazine anchor groups, was itself found to be toxic, caused by the reactivity of the anchor group. The hydrolysate is only of minor toxicity. 相似文献
A water surface sampler (WSS) was employed in combination with greased surface deposition plates (GSDPs) to measure the particulate dry deposition and gas exchange of polychlorinated biphenyls (PCBs) in Chicago, IL. Vapor phase PCB fluxes were calculated by subtracting the particulate fluxes obtained from GSDPs from total (particulate+gas) fluxes obtained from the WSS. Vapor phase PCB fluxes were divided by ambient air concentrations measured with a high volume sampler to calculate overall gas phase PCB mass transfer coefficients (K(G)). The calculated average PCB MTC was 0.54+/-0.47 cm s(-1). This experimentally determined average gas phase overall mass transfer coefficient, K(G), agreed well with the ones reported from studies using similar techniques and agreed well with modeled values obtained using MTC correlations developed for the WSS. 相似文献
In recent years, attention has been directed to chemicals with possible endocrine-disrupting properties. Polychlorinated biphenyls (PCBs) and their metabolites belong to one group of environmental contaminants that have been shown to interact with the endocrine system in mammals, including humans. Although recent developments have been made in terms of determination of PCB metabolites in blood samples, still limited number of studies have been able to elucidate their profiles and toxicological and health effects in humans. This review aims to evaluate and compare the levels of hydroxylated PCBs (OH-PCBs) and methyl sulfone PCBs (MeSO2-PCBs) in blood and their relationship to parent compounds and also address the potential risks and adverse health effects in humans. Levels of OH-PCBs varied between 0.0002 and 1.6 ng g?1w/w in human serum/plasma from the selected literature, correlating well with ∑PCBs. In contrast, ∑OH-PCB/∑PCB ratio in animals did not show a significant correlation, which might suggest that the bioaccumulation plays an even more important role in the concentration of OH-PCBs compared to PCB metabolism. Highest levels of MeSO2-PCBs were reported in marine mammals with high selectivity retention in the liver. Health effects of PCB metabolites included carcinogenicity, reproductive impairment, and developmental neurotoxicity, being more efficiently transferred to the brain and across the placenta from mother to fetus in comparison to the parent PCBs. Based on the lack of knowledge on the occurrence and distribution of lower chlorinated OH-PCBs in humans, further studies to identify and assess the risks associated to human exposure are essential. 相似文献
In 2012, the WHO classified diesel emissions as carcinogenic, and its European branch suggested creating a public health standard for airborne black carbon (BC). In 2011, EU researchers found that life expectancy could be extended four to nine times by reducing a unit of BC, vs reducing a unit of PM2.5. Only recently could such determinations be made. Steady improvements in research methodologies now enable such judgments.
In this Critical Review, we survey epidemiological and toxicological literature regarding carbonaceous combustion emissions, as research methodologies improved over time. Initially, we focus on studies of BC, diesel, and traffic emissions in the Western countries (where daily urban BC emissions are mainly from diesels). We examine effects of other carbonaceous emissions, e.g., residential burning of biomass and coal without controls, mainly in developing countries.
Throughout the 1990s, air pollution epidemiology studies rarely included species not routinely monitored. As additional PM2.5. chemical species, including carbonaceous species, became more widely available after 1999, they were gradually included in epidemiological studies. Pollutant species concentrations which more accurately reflected subject exposure also improved models.
Natural “interventions” - reductions in emissions concurrent with fuel changes or increased combustion efficiency; introduction of ventilation in highway tunnels; implementation of electronic toll payment systems – demonstrated health benefits of reducing specific carbon emissions. Toxicology studies provided plausible biological mechanisms by which different PM species, e.g., carbonaceous species, may cause harm, aiding interpretation of epidemiological studies.
Our review finds that BC from various sources appears to be causally involved in all-cause, lung cancer, and cardiovascular mortality, morbidity, and perhaps adverse birth and nervous system effects. We recommend that the U.S. EPA rubric for judging possible causality of PM2.5. mass concentrations, be used to assess which PM2.5. species are most harmful to public health.
Implications: Black carbon (BC) and correlated co-emissions appear causally related with all-cause, cardiovascular, and lung cancer mortality, and perhaps with adverse birth outcomes and central nervous system effects. Such findings are recent, since widespread monitoring for BC is also recent. Helpful epidemiological advances (using many health relevant PM2.5 species in models; using better measurements of subject exposure) have also occurred. “Natural intervention” studies also demonstrate harm from partly combusted carbonaceous emissions. Toxicology studies consistently find biological mechanisms explaining how such emissions can cause these adverse outcomes. A consistent mechanism for judging causality for different PM2.5 species is suggested.
A list of acronyms will be found at the end of the article.相似文献
Present understanding of the earth's subsurface is most often derived from samples at discrete points (wells) and interpolations or models that interpret the space between these points. Electrical resistivity imaging techniques have produced an improved capability to map contaminants (especially NAPLs--NonAqueous Phase Liquids) away from traditional wells using actual field data. Electrical resistivity image data, confirmed by drilling, have demonstrated that LNAPL (Light NAPL--less dense than water, such as gasoline) contaminants exist outside of a delineated and remediated area in Golden, Oklahoma. The data also demonstrate that LNAPL exists between monitoring and remediation wells which indicate low contaminant levels when sampled. Additionally, the electrical images provided the drilling location with the highest concentration of hydrocarbon ever found on the site, even after two phases of remediation work had been performed, although the sampling protocols varied. The results indicate that current methods of post-remediation site characterization are inadequate for complete site characterization. 相似文献