首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   677篇
  免费   15篇
  国内免费   7篇
安全科学   43篇
废物处理   49篇
环保管理   195篇
综合类   48篇
基础理论   142篇
环境理论   1篇
污染及防治   141篇
评价与监测   47篇
社会与环境   25篇
灾害及防治   8篇
  2023年   7篇
  2022年   5篇
  2021年   9篇
  2020年   13篇
  2019年   14篇
  2018年   27篇
  2017年   17篇
  2016年   24篇
  2015年   21篇
  2014年   27篇
  2013年   46篇
  2012年   30篇
  2011年   41篇
  2010年   42篇
  2009年   25篇
  2008年   39篇
  2007年   47篇
  2006年   38篇
  2005年   21篇
  2004年   21篇
  2003年   21篇
  2002年   25篇
  2001年   9篇
  2000年   13篇
  1999年   13篇
  1998年   7篇
  1997年   6篇
  1996年   12篇
  1995年   12篇
  1994年   7篇
  1993年   10篇
  1992年   2篇
  1991年   4篇
  1990年   4篇
  1989年   2篇
  1988年   3篇
  1987年   3篇
  1986年   3篇
  1985年   7篇
  1984年   2篇
  1983年   4篇
  1982年   3篇
  1981年   3篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1971年   1篇
  1968年   1篇
排序方式: 共有699条查询结果,搜索用时 312 毫秒
411.
We hypothesize that the morpho-physiological adaptations that permit tunas to achieve maximum metabolic rates (MMR) that are more than double those of other active fishes should result in high water and ion flux rates across the gills and concomitant high osmoregulatory costs. The high standard metabolic rates (SMR) of tunas and dolphin fish may, therefore, be due to the elevated rates of energy expenditure for osmoregulation (i.e. teleosts capable of achieving exceptionally high MMR necessarily have SMR). Previous investigators have suggested a link between activity patterns and osmoregulatory costs based on Na+-K+ ATPase activity in the gills of active epipelagic and sluggish deep-sea fishes. Based on these observations, we conclude that high-energy-demand fishes (i.e. tunas and dolphin fish) should have exceptionally elevated gill and intestinal Na+-K+ ATPase activity reflecting their elevated rates of salt and water transfer. To test this idea and estimate osmoregulatory costs, we measured Na+-K+ ATPase activity (V max) in homogenates of frozen samples taken from the gills and intestines of skipjack and yellowfin tunas, and the gills of dolphin fish. As a check of our procedures, we made similar measurements using tissues from hybrid red tilapia (Oreochromis mossambicus ×O. niloticus). Contrary to our supposition, we found no difference in Na+-K+ ATPase activity per unit mass of gill or intestine in these four species. We estimate the cost of osmoregulation to be at most 9% and 13% of the SMR in skipjack tuna and yellowfin tuna, respectively. Our results, therefore, do not support either of our original suppositions, and the cause(s) underlying the high SMR of tunas and dolphin fish remain unexplained. Received: 7 September 2000 / Accepted: 4 December 2000  相似文献   
412.
Atmospheric deposition of trace metals and metalloids from anthropogenic sources has led to the contamination of many European peatlands. To assess the fate and behaviour of previously deposited arsenic and lead, we constructed catchment-scale mass budgets for a degraded peatland in Northern England. Our results show a large net export of both lead and arsenic via runoff (282 ± 21.3 gPb ha(-1) y(-1) and 60.4 ± 10.5 gAs ha(-1) y(-1)), but contrasting controls on this release. Suspended particulates account for the majority of lead export, whereas the aqueous phase dominates arsenic export. Lead release is driven by geomorphological processes and is a primary effect of erosion. Arsenic release is driven by the formation of a redox-dynamic zone in the peat associated with water table drawdown, a secondary effect of gully erosion. Degradation of peatland environments by natural and anthropogenic processes has the potential to release the accumulated pool of legacy contaminants to surface waters.  相似文献   
413.
The impact of food waste content on the municipal solid waste (MSW) friction angle was studied. Using reconstituted fresh MSW specimens with different food waste content (0%, 40%, 58%, and 80%), 48 small-scale (100-mm-diameter) direct shear tests and 12 large-scale (430 mm × 430 mm) direct shear tests were performed. A stress-controlled large-scale direct shear test device allowing approximately 170-mm sample horizontal displacement was designed and used. At both testing scales, the mobilized internal friction angle of MSW decreased considerably as food waste content increased. As food waste content increased from 0% to 40% and from 40% to 80%, the mobilized internal friction angles (estimated using the mobilized peak (ultimate) shear strengths of the small-scale direct shear tests) decreased from 39° to 31° and from 31° to 7°, respectively, while those of large-scale tests decreased from 36° to 26° and from 26° to 15°, respectively. Most friction angle measurements produced in this study fell within the range of those previously reported for MSW.  相似文献   
414.
Waste wood is frequently contaminated with wood treatment preservatives including chromated copper arsenate (CCA) and alkaline copper quat (ACQ), both of which contain metals which contaminate recycled wood products. The objective of this research was to propose a design for online automated identification of As-based and Cu-based treated wood within the recovered wood waste stream utilizing an X-ray fluorescence (XRF) system, and to evaluate the detection parameters of such system. A full-scale detection unit was used for experimentation. Two main parameters (operational threshold (OT) and measurement time) were evaluated to optimize detection efficiencies. OTs of targeted metals, As and Cu, in wood were reduced to 0.02 and 0.05, respectively. The optimum minimum measurement time of 500 ms resulted in 98%, 91%, and 97% diversion of the As, Cu and Cr mass originally contained in wood, respectively. Comparisons with other detection methods show that XRF technology can potentially fulfill the need for cost-effective processing at large facilities (>30 tons per day) which require the removal of As-based preservatives from their wood waste stream.  相似文献   
415.
Common decision support tools and a growing body of knowledge about ecological recovery can help inform and guide large state and federal restoration programs affecting thousands of impaired waters. Under the federal Clean Water Act (CWA), waters not meeting state Water Quality Standards due to impairment by pollutants are placed on the CWA Section 303(d) list, scheduled for Total Maximum Daily Load (TMDL) development, and ultimately restored. Tens of thousands of 303(d)-listed waters, many with completed TMDLs, represent a restoration workload of many years. State TMDL scheduling and implementation decisions influence the choice of waters and the sequence of restoration. Strategies that compare these waters’ recovery potential could optimize the gain of ecological resources by restoring promising sites earlier. We explored ways for states to use recovery potential in restoration priority setting with landscape analysis methods, geographic data, and impaired waters monitoring data. From the literature and practice we identified measurable, recovery-relevant ecological, stressor, and social context metrics and developed a restorability screening approach adaptable to widely different environments and program goals. In this paper we describe the indicators, the methodology, and three statewide, recovery-based targeting and prioritization projects. We also call for refining the scientific basis for estimating recovery potential.
Paul ZephEmail:
  相似文献   
416.
Accurate monitoring of the effectiveness of protected areas (PAs) in decreasing deforestation is increasingly important given the vital role of forest protection in climate change mitigation. Recent studies on PA effectiveness have used remote-sensing imagery to compare deforestation rates within PAs to surrounding areas. However, remote-sensing data used in isolation provides limited information on the factors contributing to effectiveness. We used landscape-modelling techniques to estimate the effectiveness of ten PAs in Madre de Dios, Peru. Factors influencing PA effectiveness were investigated using in situ key-informant interviews. Although all of the PAs studied had positive effectiveness scores, those with the highest scores were ecotourism and conservation concessions, where monitoring and surveillance activities and good relations with surrounding communities were reported as possible factors in decreasing deforestation rates. Native community areas had the lowest scores, with deforestation mainly driven by internal resource use and population growth. Weak local governance and immigration were identified as underlying factors decreasing the effectiveness of protection, whereas good relations with surrounding communities and monitoring activity increased effectiveness. The results highlight the need to combine remote sensing with in situ information on PA management because identification of drivers and deterrents of deforestation is vital for improving the effectiveness of protection.  相似文献   
417.
418.
Surface properties of switchgrass-derived biochars produced at fast pyrolysis temperatures of 450, 600 and 800 °C were characterized at different solution pHs in order to determine the structural and chemical changes of artificially-weathered biochars when incorporated into soil. As biochars were acidified from pH 7 to 3, crystalline minerals dissolved slowly releasing nutrients; however, residual minerals were still detected in biochars produced at higher pyrolysis temperatures after pH treatment. Moreover, the amount of exchangeable bases and other inorganic compounds released from the biochars increased when pH decreased. As minerals dissolved from the biochars, total surface area and pore volume were found to increase. Surface functional groups and water vapor adsorption capacity at 0.8 P/Po also increased, whereas the potential CEC of biochars decreased due to the replacement of exchangeable sites by hydrogen ion. Therefore, during the aging process, it is predicted that soil-incorporated biochars will slowly release nutrients with changes in surface functionality and porosity, which are expected to enhance water holding capacity of soil and provide a beneficial habitat for microbial colonization.  相似文献   
419.
420.
Aqueous cleaners are emerging as safe and effective alternatives to solvent degreasers, but switching to water-based cleaners may create a new waste which is high in oil and grease and potentially RCRA hazardous. In the case study summarized here, one metal fabricator replaced a trichloroethylene degreaser with an aqueous iron phosphating/degreasing bath to clean and precondition steel parts. The aqueous bath typically lasted three to four months, until the buildup of oil in the tank began to sacrifice product quality and raise oil and grease levels in the rinse water discharge. Hauling away and replacing the spent cleaner resulted in more than 15,000 gallon/year of hazardous waste.

Ultrafiltration was selected as the most promising technology to recycle the aqueous cleaner and thereby reduce hazardous waste generation. Following pilot-scale testing at the Illinois Hazardous Waste Research and Information Center, on-site full-scale testing integrated the new waste reduction scheme directly into the facility’s production process. Ultrafiltration continuously filtered and returned clean process solution back to the iron phosphating/degreasing bath during normal plant operation, substantially reducing and maintaining oil concentrations at acceptable operating levels. The new process design successfully reduced hazardous waste generation 99.8 percent with a payback period of only 6.9 months.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号