首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   0篇
  国内免费   2篇
废物处理   19篇
环保管理   1篇
综合类   2篇
基础理论   3篇
污染及防治   6篇
评价与监测   1篇
社会与环境   4篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2019年   1篇
  2017年   2篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   5篇
  2009年   3篇
  2007年   1篇
  2006年   3篇
  2005年   3篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  1995年   1篇
  1982年   1篇
排序方式: 共有36条查询结果,搜索用时 15 毫秒
31.
Alkaline eluate from municipal solid waste (MSW) incineration residue deposited in landfill alkalizes waste and soil layers. From the viewpoint of accelerating stability and preventing heavy metal elution, pH of the landfill layer (waste and daily cover soil) should be controlled. On the other hand, pH of leachate from existing MSW landfill sites is usually approximately neutral. One of the reasons is that daily cover soil can neutralize alkaline solution containing Ca2+ as cation. However, in landfill layer where various types of wastes and reactions should be taken into consideration, the ability to neutralize alkaline solutions other than Ca(OH)2 by soil should be evaluated. In this study, the neutralization capacities of various types of soils were measured using Ca(OH)2 and NaOH solutions. Each soil used in this study showed approximately the same capacity to neutralize both alkaline solutions of Ca(OH)2 and NaOH. The cation exchange capacity was less than 30% of the maximum alkali neutralization capacity obtained by the titration test. The mechanism of neutralization by the pH-dependent charge can explain the same neutralization capacities of the soils. Although further investigation on the neutralization capacity of the soils for alkaline substances other than NaOH is required, daily cover soil could serve as a buffer zone for alkaline leachates containing Ca(OH)2 or other alkaline substances.  相似文献   
32.
33.
This article focuses on the historical development of landfill technology since the beginning of the nineteenth century in Japan. The regulations and guidelines that form a framework for the technology are reviewed, and the historical background and the current state of Japanese municipal solid waste (MSW) management are described. Through the analysis of data collected from facility leaflets, changes in the leachate treatment system are surveyed. Finally, the concept of the “sustainable bioreactor landfill with low organics” is proposed.  相似文献   
34.
The present paper reports how stand size-structure dynamics due to competition between different-sized trees affect long-term forested water balance in Japanese cool-temperate planted stands (evergreen coniferous Cryptomeria japonica and deciduous coniferous Larix kaempferi stands) using a fully coupled multi-layered meteorological surface physics—terrestrial ecosystems model. The simulation captured the well-known annual variation in leaf area index (LAI) accurately with stand age in monocultured and even-aged stands; the occurrence of maximum LAI during the early growth stage and then a gradual decline followed by a steady state after the maximum LAI. The simulations also detected a high dependency of annual evapotranspiration (AETr) on LAI with stand age that is well known by prior observational researches. In the C. japonica (shade-tolerant late-successional species) stand, the relationship between annual net primary productivity of an individual tree (NPPind) and individual tree mass (w) changed from linear to a convex curve during self-thinning, indicating that the degree of asymmetric tree competition intensified with forest stand development. The higher degree of competitive asymmetry characterized by the convex-shaped NPPind-w relationship produced greater size inequality, i.e., the formation of trees stratified by height. Under such conditions, AETr and annual transpiration (ATr) were mainly regulated by larger trees. On the other hand, the NPPind-w relationships in the L. kaempferi (shade-intolerant early-successional species) stand were linear throughout the simulated period, indicating the lower degree of competitive asymmetry. Under such conditions, the growth of intermediate-sized trees was enhanced and these trees became a dominant source of AETr (and also ATr) during self-thinning. Furthermore, the sensitivity analysis of the effects of ecophysiological parameters such as foliage profile (i.e., vertical distribution of leaf area density) of an individual tree (distribution pattern is described by the parameter η), the maximum carboxylation velocity (Vcmax0) and biomass allocation pattern of individual plant growth (μ1) on AETr, ATr and annual runoff (ARoff) showed that the temporal trends of AETr, ATr, ARoff and NPPind-w relationships were completely the same as those in the control simulations. However, the NPPind-w relationship during self-thinning indicated higher degrees of competitive asymmetry when η or Vcmax0 were greater than those in the control simulation and generated greater AETr and ATr and thus smaller ARoff. We found that more asymmetric tree competition brings about greater size inequality between different-sized trees and thus more evapotranspiration and less runoff in a forest stand. Overall, our simulation approach revealed that not only LAI dynamics but also plant competition, and thus size-structure dynamics, in a forest ecosystem are essential to long-term future projections of forested water balance.  相似文献   
35.
Permanganate treatment is widely used for disinfection of bacteria in surface-contaminated water. In this paper, the fate of the dissolved permanganate in aqueous solution after contact with cells of Pseudomonas fluorescens was studied. Concomitant accumulation of divalent cations of Mg~(2+), Zn~(2+), and Co~(2+) during precipitation of Mn oxides was also studied. The time course of the Mn concentration in solution showed an abrupt decrease after contact of Mn(VII) with microbial cells, followed by an increase after ~ 24 hr.XRD analysis of the precipitated Mn oxides, called biomass Mn oxides, showed the formation of low-crystalline birnessite. Visible spectroscopy and X-ray absorption near edge structure(XANES) analyses indicated that dissolved Mn(VII) was reduced to form biomass Mn oxides involving Mn(IV) and Mn(III), followed by reduction to soluble Mn(II).The numbers of electron transferred from microbial cells to permanganate and to biomass Mn oxides for 24 hr after the contact indicated that the numbers of electron transfer from microbial cell was approximately 50 times higher to dissolved permanganate than to the biomass Mn oxides in present experimental conditions. The 24 hr accumulation of divalent cations during formation of biomass Mn oxides was in the order of Co~(2+) Zn~(2+) Mg~(2+).XANES analysis of Co showed that oxidation of Co~(2+) to Co~(3+) resulted in higher accumulation of Co than Zn and Mg. Thus, treatment of surface water by KMnO_4 solution is effective not only for disinfection of microorganisms, but also for the elimination of metal cations from surface water.  相似文献   
36.
Environment, Development and Sustainability - Many information and communications technology (ICT) services have become commonplace worldwide and are certain to continue to spread faster than...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号