首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104篇
  免费   0篇
  国内免费   3篇
安全科学   5篇
废物处理   6篇
环保管理   6篇
综合类   20篇
基础理论   27篇
污染及防治   29篇
评价与监测   12篇
社会与环境   2篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2019年   3篇
  2018年   1篇
  2017年   1篇
  2016年   5篇
  2015年   5篇
  2014年   3篇
  2013年   9篇
  2012年   9篇
  2011年   10篇
  2010年   4篇
  2009年   4篇
  2008年   10篇
  2007年   8篇
  2006年   6篇
  2005年   6篇
  2004年   2篇
  2003年   5篇
  2002年   1篇
  2000年   2篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1986年   1篇
  1983年   1篇
排序方式: 共有107条查询结果,搜索用时 31 毫秒
61.
This study was carried out to evaluate longevity of available organic materials used for sulfate-reducing bacteria (SRB) activity in vertical flow ponds (VFPs) to treat mine drainage in South Korea. Spent mushroom compost samples (SMC) were tested as substrates in VFPs and analyzed for total organic carbon in VFPs, and were collected to analyze total organic carbon (TOC), T-N, T-P, K, metals and residual cellulose to check the longevity assessment. Chemical analysis revealed that the average contents of Fe, Al and Mn in SMC of VFPs were 19,907, 32,137 and 434 mg/kg, respectively. The contents of Fe and Al in SMC of VFPs were much higher than those of the unused SMC (control), but to the contrary, those of Mn showed a reversed tendency. Average TOC content of the controls was 64.19% but in one of the VFP substrates was as low as 15.92%. This might be resulted from SRB consumed the available organic carbon in SMC as VFPs system aged. Contents of T-N in VFPs tended to decrease as VFPs aged. The residual cellulose ranged from 3.88 to 6.72% (g/g). There existed a negative relationship between residual cellulose contents and ages of VFPs. Assuming that SMC in all VFPs had similar compositions when the VFPs were initially established, trend analysis predicted that the amount of carbon source for SRB might be available for 12-15 years further, depending on VFPs.  相似文献   
62.
An initial reclamation of the Young Dong coal mine site, located in northeastern South Korea, was completed in 1995. Despite the filling of the adit with limestone, acid rock drainage (ARD) enters Young Dong tributary and is then discharged to Imgok Creek. This ARD carries an average of 500 mg CaCO(3)/l of mineral acidity, primarily as Fe(II) and Al. Before spring runoff, the flow of Imgok Creek is 3.3-4 times greater than that of the tributary and has an alkalinity of 100 mg CaCO(3)/l, which is sufficient to eliminate the mineral acidity and raise the pH to about 6.5. From April through September 2008, there were at least two periods of high surface flow that affects the flow of ARD from the adit. Flow of ARD reaches 2.8 m(3)/min during spring runoff. This raised the concentrations of Fe and Al in the confluence with Imgok Creek. However, by 2 km downstream the pH of the Imgok Creek is 6.5 and only dissolved Fe is above the Korean drinking water criteria (0.30 mg/l). This suggests only a minor impact of Young Dong Creek water on Imgok Creek. Acid digestion of the sediments in Imgok Creek and Young Dong Tributary reveals considerable abundances of heavy metals, which could have a long-term impact on water quality. However, several water-based leaching tests, which better simulate the bioavailable metals pool, released only Al, Fe, Mn, and Zn at concentrations exceeding the criteria for drinking water or aquatic life.  相似文献   
63.
The recently isolatedPseudomonas sp. A33 was investigated for the production of a highly unsaturated polyhydroxyalkanoate (PHA) containing various alkyl and alkenyl pendent groups from 1,3-butanediol in a cell-recycle fed-batch production mode. The monomer composition and degree of unsaturation in PHA were dependent on the environmental conditions. The production temperature markedly influenced the content, composition, and degree of unsaturation of PHA. As the production temperature decreased from 30 to 10°C, the degree of unsaturation and content of PHA were increased, while the mole percentage of 3-hydroxybutyrate (3HB) was decreased. These temperature effects on the composition of PHA imply that the production can be used as a control variable for the biosynthesis of a highly unsaturated PHA and for the specific regulation of the composition of PHA. The biosynthetic pathway for a highly unsaturated PHA which is based on de novo fatty acid biosynthetic pathway is proposed. For the enhanced production of this functional PHA, a high cell density was achieved by cell-recycle continuous culture at 30°C, and then a large amount of PHA was accumulated at 15°C by fed-batch addition of the feeding solution containing excess 1,3-butanediol. The structures of monomer constituents of polymer were confirmed by gas chromatography—mass spectrometric analysis of trimethylsiyl derivatives of 3-hydroxyalkanoic acids methyl esters.  相似文献   
64.
ABSTRACT: The non-Fickian nature of the longitudinal dispersion in natural channels during low flow has been investigated using both laboratory experiments and the numerical solution of the proposed mathematical model which is based on a set of mass balance equations describing the dispersion and mass exchange mechanisms. Laboratory experiments, which involved collection of channel geometry, hydraulic, and dye dispersion test data, were conducted to obtain sets of experimental data on a model of four pool and riffle sequences in a 161-ft long tilting flume in the Hydrosystems Laboratory at the University of Illinois at Urbana-Champaign. The experimental results indicate that flow over the model pool-riffle sequences is highly nonuniform. Concentration-time curves are significantly skewed with long tails. The mixing and dispersion in the laboratory channel was simulated using a numerical solution of the mathematical model in which the finite difference method developed by Stone and Brian (1963) was used as a solution technique. The comparison between measured and predicted concentration-time curves shows that there is a good level of agreement in the general shape, peak concentration, and time to peak. The proposed model shows significant improvement over the conventional Fickian model in predicting dispersion processes in natural channels under low flow conditions.  相似文献   
65.
● Definition of emerging contaminants in drinking water is introduced. ● SERS and standard methods for emerging contaminant analysis are compared. ● Enhancement factor and accessibility of SERS hot spots are equally important. ● SERS sensors should be tailored according to emerging contaminant properties. ● Challenges to meet drinking water regulatory guidelines are discussed. Emerging contaminants (ECs) in drinking water pose threats to public health due to their environmental prevalence and potential toxicity. The occurrence of ECs in our drinking water supplies depends on their physicochemical properties, discharging rate, and susceptibility to removal by water treatment processes. Uncertain health effects of long-term exposure to ECs justify their regular monitoring in drinking water supplies. In this review article, we will summarize the current status and future opportunities of surface-enhanced Raman spectroscopy (SERS) for EC analysis in drinking water. Working principles of SERS are first introduced and a comparison of SERS and liquid chromatography-tandem mass spectrometry in terms of cost, time, sensitivity, and availability is made. Subsequently, we discuss the strategies for designing effective SERS sensors for EC analysis based on five categories—per- and polyfluoroalkyl substances, novel pesticides, pharmaceuticals, endocrine-disrupting chemicals, and microplastics. In addition to maximizing the intrinsic enhancement factors of SERS substrates, strategies to improve hot spot accessibilities to the targeting ECs are equally important. This is a review article focusing on SERS analysis of ECs in drinking water. The discussions are not only guided by numerous endeavors to advance SERS technology but also by the drinking water regulatory policy.  相似文献   
66.
Although a quarter of a century has passed since Janis proposed his groupthink model in 1972, there is very little consensus among researchers on the validity of the model. This study conducted a comprehensive empirical investigation of Janis's model by including all 24 variables in the research. Data were collected from 64 four‐person ad hoc groups; the group discussion sessions were videotaped and content‐analysed afterwards. Statistical analyses revealed that Janis's predictions about the causal relationship among four groups of variables in the model are only partially correct; when the effects of individual independent variables on the dependent variables were tested, Janis's predictions were confirmed in only two out of 23 cases. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   
67.
The aim of the work presented here is to study the effectiveness of building air handling units (AHUs) in serving as high volume sampling devices for airborne bacteria and viruses. An HVAC test facility constructed according to ASHRAE Standard 52.2-1999 was used for the controlled loading of HVAC filter media with aerosolized bacteria and virus. Nonpathogenic Bacillus subtilis var. niger was chosen as a surrogate for Bacillus anthracis. Three animal viruses; transmissible gastroenteritis virus (TGEV), avian pneumovirus (APV), and fowlpox virus were chosen as surrogates for three human viruses; SARS coronavirus, respiratory syncytial virus, and smallpox virus; respectively. These bacteria and viruses were nebulized in separate tests and injected into the test duct of the test facility upstream of a MERV 14 filter. SKC Biosamplers upstream and downstream of the test filter served as reference samplers. The collection efficiency of the filter media was calculated to be 96.5 +/- 1.5% for B. subtilis, however no collection efficiency was measured for the viruses as no live virus was ever recovered from the downstream samplers. Filter samples were cut from the test filter and eluted by hand-shaking. An extraction efficiency of 105 +/- 19% was calculated for B. subtilis. The viruses were extracted at much lower efficiencies (0.7-20%). Our results indicate that the airborne concentration of spore-forming bacteria in building AHUs may be determined by analyzing the material collected on HVAC filter media, however culture-based analytical techniques are impractical for virus recovery. Molecular-based identification techniques such as PCR could be used.  相似文献   
68.
This paper examines the applicability of food waste leachate (FWL) in bioreactor landfills or anaerobic digesters to produce methane as a sustainable solution to the persisting leachate management problem in Korea. Taking into account the climatic conditions in Korea and FWL characteristics, the effect of key parameters, viz., temperature, alkalinity and salinity on methane yield was investigated. The monthly average moisture content and the ratio of volatile solids to total solids of the FWL were found to be 84% and 91%, respectively. The biochemical methane potential experiment under standard digestion conditions showed the methane yield of FWL to be 358 and 478 ml/g VS after 10 and 28 days of digestion, respectively, with an average methane content of 70%. Elemental analysis showed the chemical composition of FWL to be C(13.02)H(23.01)O(5.93)N(1). The highest methane yield of 403 ml/g VS was obtained at 35 degrees C due to the adaptation of seed microorganisms to mesophilic atmosphere, while methane yields at 25, 45 and 55 degrees C were 370, 351 and 275 ml/g VS, respectively, at the end of 20 days. Addition of alkalinity had a favorable effect on the methane yield. Dilution of FWL with salinity of 2g/l NaCl resulted in 561 ml CH(4)/g VS at the end of 30 days. Considering its high biodegradability (82.6%) and methane production potential, anaerobic digestion of FWL in bioreactor landfills or anaerobic digesters with a preferred control of alkalinity and salinity can be considered as a sustainable solution to the present emergent problem.  相似文献   
69.
Operation parameters such as waste feed rate, air supply, and temperature of the gas in incineration plants should be carefully determined for various situations, which include seasonal and annual changes in fuel characteristics, and performance change of the hardware. These changes may cause off-design point operation of the incinerators, which results in many problems in operation of the flue gas treatment system, low-oxygen in the combustion chamber, thermal damage of the incinerator wall, and so on. In this study, an engineering approach using computational tools along with field tests and observation is presented. For computational tools, a 0-dimensional model for heat and mass balance, computational fluid dynamics (CFD), and a global prediction model for dioxin are employed. They play a key role in diagnosing incineration systems and evaluating changes in operating conditions. The typical results of each tool are reported, and examples of improvement in operating performance are described.  相似文献   
70.
Bacteria transport and adhesion experiments under water-saturated and partially saturated conditions were examined over a wide range of ionic strength, from 1 to 100 mM KCl, CaCl2, and MgCl2, and at water contents of 0.15 and 0.22 in sand columns packed with three different sands, baked, sterilized, and raw sands in order to investigate the effects of ionic strength, water content, and porous media type on the microbial adhesion in soil aquifer treatment (SAT). Well-characterized Escherichia coli JM109 were used as model bacterial cells in this study. Column study results showed that bacterial deposition rates increased with increasing ionic strength and decreasing water content, and were higher in raw sand columns than those in other sand columns. The Derjaguin–Landau–Verwey–Overbeek (DLVO) theory was applied to experimental results in order to consider the interaction energies between the bacterial cells and collector grains; results revealed that a considerable amount of bacterial cells was weakly deposited onto the solid surfaces in secondary minimum.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号