The natural selenium poisoning due to toxic Se levels in food chain had been observed in humans and animals in Lower Cambrian outcrop areas in Southern Shaanxi, China. To find out the distribution pattern of selenium and other hazardous elements in the plant, soil and water of Lower Cambrian in Southern Shaanxi, China, and their possible potential health risk, a total of 30 elements were analyzed and the health risk assessment of 18 elements was calculated. Results showed that the soil, plant and natural water of Lower Cambrian all had relatively high Se levels. In Lower Cambrian, the soil was enriched with Se, As, Ba, Cu, Mo, Ni, Zn, Ga, Cd and Cr (1.68 < Igeo < 4.48, Igeo; geo-accumulation index). In same plants, the contents of Se, Cd and Zn (except Cd in corn and rice, Zn in potato and corn) of Lower Cambrian were higher than that of the other strata. Ba and Ga in natural water were higher than that of the other strata, while K and Cs were opposite. The health risk assessment results showed that the people living in outcrop areas of Lower Cambrian had both high total non-carcinogenic risk of 18 elements (HI = 16.12, acceptable range: < 1) and carcinogenic risk of As (3.98E−04, acceptable range: 10−6–10−4). High contents of Se, As, Mo and Tl of Lower Cambrian may pose a health risk to local people, and food intake was the major pathway. For minimizing potential health risk, the local inhabitants should use the mix-imported food with local growing foods.
The aerosol direct effects result in a 3%–9% increase in PM2.5 concentrations over Southern Hebei.These impacts are substantially different under different PM2.5 loadings.Industrial and domestic contributions will be underestimated if ignoring the feedbacks. Beijing-Tianjin-Hebei area is the most air polluted region in China and the three neighborhood southern Hebei cities, Shijiazhuang, Xingtai, and Handan, are listed in the top ten polluted cities with severe PM2.5 pollution. The objective of this paper is to evaluate the impacts of aerosol direct effects on air quality over the southern Hebei cities, as well as the impacts when considering those effects on source apportionment using three dimensional air quality models. The WRF/Chem model was applied over the East Asia and northern China at 36 and 12 km horizontal grid resolutions, respectively, for the period of January 2013, with two sets of simulations with or without aerosol-meteorology feedbacks. The source contributions of power plants, industrial, domestic, transportation, and agriculture are evaluated using the Brute-Force Method (BFM) under the two simulation configurations. Our results indicate that, although the increases in PM2.5 concentrations due to those effects over the three southern Hebei cities are only 3%–9% on montly average, they are much more significant under high PM2.5 loadings (~50 μg·m−3 when PM2.5 concentrations are higher than 400 μg m−3). When considering the aerosol feedbacks, the contributions of industrial and domestic sources assessed using the BFM will obviously increase (e.g., from 30%–34% to 32%–37% for industrial), especially under high PM2.5 loadings (e.g., from 36%–44% to 43%–47% for domestic when PM2.5>400 μg·m−3). Our results imply that the aerosol direct effects should not be ignored during severe pollution episodes, especially in short-term source apportionment using the BFM. 相似文献
This study examined polybrominated diphenyl ethers (PBDEs) in central air conditioner filter (CACF) dust from a new office building in Shenzhen, China. Human exposure to PBDE via dust inhalation and ingestion were also estimated. PBDEs level in CACF dust was lower than those in the other countries and regions. Approximately 0.671 pg/kg bw/day PM2.5 (Particulate Matter up to 2.5 μm in size) bounded Σ15PBDEs can be inhaled deep into the lungs and 4.123 pg/kg bw/day PM10 (Particulate Matter up to 10 μm in size) bounded Σ15PBDEs tend to be deposited in the upper parts of the respiratory system. The average total intake of Σ15PBDEs via dust inhalation and ingestion for adults reached ∼141 pg/kg bw/day in this building. This value was far below the reference dose (RfD) recommended by United States Environmental Protection Agency. Human exposure to PBDEs via dust inhalation and ingestion in the new building is less than the old ones. 相似文献