全文获取类型
收费全文 | 564篇 |
免费 | 40篇 |
国内免费 | 160篇 |
专业分类
安全科学 | 38篇 |
废物处理 | 33篇 |
环保管理 | 43篇 |
综合类 | 307篇 |
基础理论 | 89篇 |
污染及防治 | 199篇 |
评价与监测 | 15篇 |
社会与环境 | 15篇 |
灾害及防治 | 25篇 |
出版年
2024年 | 3篇 |
2023年 | 11篇 |
2022年 | 27篇 |
2021年 | 24篇 |
2020年 | 14篇 |
2019年 | 13篇 |
2018年 | 21篇 |
2017年 | 21篇 |
2016年 | 19篇 |
2015年 | 42篇 |
2014年 | 29篇 |
2013年 | 63篇 |
2012年 | 45篇 |
2011年 | 38篇 |
2010年 | 39篇 |
2009年 | 32篇 |
2008年 | 37篇 |
2007年 | 31篇 |
2006年 | 42篇 |
2005年 | 33篇 |
2004年 | 10篇 |
2003年 | 20篇 |
2002年 | 21篇 |
2001年 | 23篇 |
2000年 | 23篇 |
1999年 | 11篇 |
1998年 | 15篇 |
1997年 | 11篇 |
1996年 | 8篇 |
1995年 | 7篇 |
1994年 | 10篇 |
1993年 | 5篇 |
1992年 | 2篇 |
1991年 | 1篇 |
1990年 | 5篇 |
1989年 | 1篇 |
1986年 | 2篇 |
1984年 | 1篇 |
1982年 | 1篇 |
1981年 | 2篇 |
1979年 | 1篇 |
排序方式: 共有764条查询结果,搜索用时 15 毫秒
281.
282.
磷酸三苯酯(TPhP)是广泛存在于环境介质和生物体内的一种典型有机磷阻燃剂。为探求TPhP诱发水生动物发育毒性的分子机制,本研究以斑马鱼为模式动物,将发育至2.5 hpf (hours post fertilization)的斑马鱼胚胎暴露于0.0025、0.1、1、10、100和1 000 μg·L-1 TPhP溶液至7 dpf (days post fertilization),考察斑马鱼胚胎生长发育指标和线粒体功能的变化,通过代谢组学分析揭示相关分子机制。结果表明,环境相关浓度(0.0025、0.1和1 μg·L-1)TPhP对斑马鱼胚胎发育无显著影响,但是轻微干扰了斑马鱼的代谢过程。100和1 000 μg·L-1 TPhP暴露引起斑马鱼心跳速率、孵化率和线粒体膜电位明显下调,畸形率分别增加6.8倍和12.5倍,死亡率分别增加7.2倍和16.5倍。代谢组学分析发现,10、100和1 000 μg·L-1 TPhP显著抑制斑马鱼氨基酸代谢,降低缬氨酸、亮氨酸和异亮氨酸水平,抑制氨酰-tRNA生物合成过程;同时引起葡萄糖糖酵解过程和三羧酸循环发生障碍。氨基酸和糖代谢异常可能是TPhP引起斑马鱼发育畸形的主要原因,线粒体功能紊乱可能是TPhP诱发三羧酸循环障碍的原因。上述研究结果为TPhP发育毒性机制分析提供了新思路。 相似文献
283.
在低于100℃温度条件下,采用溶胶-凝胶法以钛酸正丁酯为钛源,碘酸钾为碘源,制备了I掺杂纳米TiO2催化剂(I-TiO2),运用X-射线衍射(XRD)、透射电镜(TEM)及X-射线光电子能谱(XPS)等对催化剂进行表征,结果表明,TiO2及I-TiO2催化剂均为锐钛矿,I吸附并包裹在TiO2表面或以间隙进入的形式存在,并未进入TiO2晶格。通过在可见光照射下(λ>420 nm)以罗丹明B(Rhodamine B,RhB)的光催化降解为探针反应研究了在不同条件下制备催化剂的催化性能,结果表明,掺杂比为nI:nTi=0.05∶1,焙烧温度为400℃,降解介质条件pH=7时,I-TiO2光催化活性明显优于未掺杂的TiO2。光催化降解过程通过红外光谱(IR),总有机碳(TOC)跟踪测定,比较了TiO2掺杂前后降解RhB和对氯苯酚(4-CP)的光催化特性差异;同时采用苯甲酸荧光光度法跟踪测定体系中的氧化物种,表明在可见光下,I-TiO2光催化体系中产生.OH高活性氧化物种从而氧化降解目标化合物。 相似文献
284.
北江流域抗生素污染水平和来源初探 总被引:1,自引:0,他引:1
北江是发源于湖南(武水)和江西(浈水),汇于广东韶关,流经广东全境并入海的三大河流之一。为了解整个北江抗生素污染情况,共设置44个采样点,并采集了河水及部分沉积物样品,较全面地分析了各样品中12种典型抗生素含量并初步探究了其污染来源。研究发现,包括北江源头在内的全河段均有抗生素的检出,5类抗生素在表层水和沉积物中的平均浓度分别为77.8 ng·L~(-1)和3.6 ng·g~(-1)。其中,大环内酯类污染最为严重,其含量范围为11.7~114.6 ng·L~(-1)和0~435.3 ng·g~(-1),远高于其他类抗生素。表层水中磺胺类的磺胺甲恶唑和氯霉素类的检出率达100%,其中以磺胺甲恶唑(14.7 ng·L~(-1))和阿奇霉素(25.0 ng·L~(-1))为主,而沉积物中以阿奇霉素(35.9 ng·g~(-1))、氧氟沙星(5.4 ng·g~(-1))和四环素(3.3 ng·g~(-1))为主。由于流域污染源种类和数量不同,各抗生素在北江中的分布也存在差异。表层水中抗生素含量水平表现为下游高于上中游,在沉积物中则主要集中于中、下游之间河段。这反映了人类活动强度对北江抗生素污染的直接影响。 相似文献
285.
286.
287.
288.
乙酸钠为碳源时进水COD和总磷对生物除磷的影响 总被引:7,自引:4,他引:7
研究了乙酸钠为碳源时,乙酸盐和总磷浓度对循序间歇式生物除磷工艺运行效果的影响,以及含高浓度乙酸盐废水不能有效除磷的原因结果表明:COD<600mg·L-1时,随着COD/TP值的增大,总磷去除率提高,COD/TP<50时,磷的去除率提高显著,但当COD/TP>50时,磷的去除变化不大;进水乙酸盐浓度过高(COD>600mg·L-1)使除磷效率逐渐下降,COD>1000 mg·L-1会使生物除磷系统完全崩溃;研究发现除磷效率的下降是由于过多的乙酸盐从厌氧段进入了好氧段,引起丝状菌的增殖、污泥膨胀,导致聚磷菌被洗出. 相似文献
289.
微塑料与农药污染的联合毒性作用研究进展 总被引:2,自引:0,他引:2
近海环境中的微塑料污染问题已成为全球性的环境问题,引起了世界范围内的广泛关注。微塑料不仅能够对生物造成物理损伤,而且塑料中的添加剂如邻苯二甲酸酯、双酚A、多溴二苯醚等也会随着塑料的风化而浸出进入环境,对生物产生毒害,同时,微塑料还能吸附海洋环境中的其他污染物,从而对生物产生联合毒性作用。本文综述了微塑料与持久性有机污染物的联合作用,结果表明聚苯乙烯微塑料能够吸附海水中的持久性有机污染物如多环芳烃、多氯联苯、有机氯农药滴滴涕,从而可能导致这些污染物在海洋生物组织中富集,对人类健康存在直接或间接危害。最后本文在总结前人研究的基础上,对未来微塑料与农药污染联合毒性作用的研究方向做了简要分析和展望。 相似文献
290.
4种喹诺酮类抗生素对发光菌毒性作用研究 总被引:3,自引:0,他引:3
分析了4种常见的喹诺酮类抗生素(QNs)对发光菌(Photobacterium phosphoreum)的单一毒性和等毒性比例下的联合毒性作用,基于毒性单位法(TU)、相加指数法(AI)和混合毒性指数法(MTI)评价混合体系联合毒性的作用类型。加替沙星、洛美沙星、左氧氟沙星和诺氟沙星4种喹诺酮类医药品对发光菌的半数效应浓度(EC50)分别为:0.084×10-3、0.137×10-3、0.129×10-3 和0.151×10-3 mol·L-1。不同的评价方法对4种QNs的联合效应评价结果具有较好的一致性,多元混合体系呈现为不同程度的拮抗作用。结合分子结构特征和不同取代基相互作用,初步分析了联合毒性机理,进一步的毒性作用机制还需通过对生物生理生化反应等进行深入研究。本研究多种QNs混合体系呈现拮抗作用为主,揭示了此类医药品在环境中的联合使用可能导致药效降低以及微生物耐药性的产生和传播。 相似文献