首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
环保管理   1篇
综合类   3篇
基础理论   2篇
污染及防治   1篇
评价与监测   2篇
  2010年   1篇
  2007年   1篇
  2006年   2篇
  2004年   2篇
  2001年   1篇
  1998年   1篇
  1978年   1篇
排序方式: 共有9条查询结果,搜索用时 421 毫秒
1
1.
2.
Lightning fire is the dominant natural disturbance of the western mixedwood boreal forest of North America. We quantified the independent effects of weather and forest composition on lightning fire initiation (a detected and recorded fire start) patterns in Alberta, Canada, to demonstrate how these biotic and abiotic components contribute to ecosystem dynamics in the mixedwood boreal forest. We used logistic regression to describe variation in annual initiation occurrence among 10,000-ha landscape units (voxels) covering a 9 million-ha study region over 11 years. At a voxel scale, forest composition explained more variation in annual initiation than did weather indices. Initiations occurred more frequently in landscapes with more conifer fuels (Picea spp.), and less in aspen-dominated (Populus spp.) ones. Initiations were less frequent in landscapes that had recently burned. Variation in initiation was also influenced by joint weather-lightning indices, but to a lesser degree. For each voxel, these indices quantified the number of days in the fire season when moisture levels were low and lightning was detected. Regional indices of fire weather severity explained substantial interannual variation of initiation, and the effect of forest composition was stronger in years with more severe fire weather. Our study is a conclusive demonstration of biotic and abiotic regulation of lightning fire initiation in the mixedwood boreal forest. The independent effects of forest composition emphasize that vegetation feedbacks strongly regulate disturbance dynamics in the region.  相似文献   
3.
在过去的几十年里,对基于对历史上自然干预动力的理解的森林经营方法的开发兴趣日益增加.这一方法的理由是,有利于景观组成和林分结构及自然生态系统的经营活动也应当保持生物多样性和基本的生态功能.在火灾居支配地位的景观,用森林经营替代火灾这一方法只在当前火频率和未来火频率比工业化以前的火频率低得多的情况下才有可能.通过将当前火频率、未来火频率与在加拿大北方森林中再现的森林火灾历史的比较,我们讨论了这一问题.对于多块研究地而言,当前火频率和2倍CO.及3倍CO2情形下模拟的未来火频率都低于过去火频率,这暗示着森林经营可以被用于重建受控于火灾的、工业化以前景观的林木年龄结构.但对目前的同龄林经营来说,还有一些重要的限制因子.  相似文献   
4.
Over the past decades, there has been an increasing interest in the development of forest management approaches that are based on an understanding of historical natural disturbance dynamics. The rationale for such an approach is that management to favor landscape compositions and stand structures similar to those of natural ecosystems should also maintain biological diversity and essential ecological functions. In fire-dominated landscapes, this approach is possible only if current and future fire frequencies are sufficiently low, comparing to pre-industrial fire frequency, that we can substitute fire by forest management. We address this question by comparing current and future fire frequency to historical reconstruction of fire frequency from studies realized in the Canadian boreal forest. Current and simulated future fire frequencies using 2 and 3 x CO2 scenarios are lower than the historical fire frequency for many sites, suggesting that forest management could potentially be used to recreate the forest age structure of fire-controlled pre-industrial landscapes. There are however, important limitations to the current even-age management.  相似文献   
5.
Correlations and cross-correlations between forest fires in the province of British Columbia, Canada, and sea surface temperatures in the Pacific Ocean were evaluated. British Columbia has a long Pacific Ocean coastline; given that there may be teleconnections between the province's forest fires and climate variability over the ocean, significant correlations may exist between forest fires and the sea surface temperature of the Pacific Ocean. Fire occurrences and areas burned through lightning-caused and human-caused fires were analyzed against individual 1° × 1° grid cells of anomalies in the sea surface temperature to determine correlations for the period 1950-2006. Significant correlations (p < 0.05) for vast areas of the ocean were found between occurrences of lightning-caused fires and sea surface temperature anomalies for time lags of 1 and 2 years, whereas significant correlations between occurrences of human-caused fires and sea surface temperature anomalies occurred extensively for many time lags. To support the results of this approach, correlations between fire data and the Niño 3.4, Pacific Decadal Oscillation, and Arctic Oscillation indices were tested for the same period. Significant correlations were found between fire occurrences and these indices at certain time lags. Overall, fire occurrence appeared to be more extensively correlated with sea surface temperature anomalies than was area burned. These results support the hypothesis that teleconnections exist between fire activity in British Columbia and sea surface temperatures in the Pacific Ocean, and the correlations suggest that linear regression models or other regression techniques may be appropriate for predicting fire severity from the sea surface temperatures of one or more previous years.  相似文献   
6.
Fires are critical elements in the Earth System, linking climate, humans, and vegetation. With 200–500 Mha burnt annually, fire disturbs a greater area over a wider variety of biomes than any other natural disturbance. Fire ignition, propagation, and impacts depend on the interactions among climate, vegetation structure, and land use on local to regional scales. Therefore, fires and their effects on terrestrial ecosystems are highly sensitive to global change. Fires can cause dramatic changes in the structure and functioning of ecosystems. They have significant impacts on the atmosphere and biogeochemical cycles. By contributing significantly to greenhouse gas (e.g., with the release of 1.7–4.1 Pg of carbon per year) and aerosol emissions, and modifying surface properties, they affect not only vegetation but also climate. Fires also modify the provision of a variety of ecosystem services such as carbon sequestration, soil fertility, grazing value, biodiversity, and tourism, and can hence trigger land use change. Fires must therefore be included in global and regional assessments of vulnerability to global change. Fundamental understanding of vulnerability of land systems to fire is required to advise management and policy. Assessing regional vulnerabilities resulting from biophysical and human consequences of changed fire regimes under global change scenarios requires an integrated approach. Here we present a generic conceptual framework for such integrated, multidisciplinary studies. The framework is structured around three interacting (partially nested) subsystems whose contribute to vulnerability. The first subsystem describes the controls on fire regimes (exposure). A first feedback subsystem links fire regimes to atmospheric and climate dynamics within the Earth System (sensitivity), while the second feedback subsystem links changes in fire regimes to changes in the provision of ecological services and to their consequences for human systems (adaptability). We then briefly illustrate how the framework can be applied to two regional cases with contrasting ecological and human context: boreal forests of northern America and African savannahs.  相似文献   
7.
Forest Fires and Climate Change in the 21ST Century   总被引:3,自引:0,他引:3  
Fire is the major stand-renewing disturbance in the circumboreal forest. Weather and climate are the most important factors influencing fire activity and these factors are changing due to human-caused climate change. This paper discusses and synthesises the current state of fire and climate change research and the potential direction for future studies on fire and climate change. In the future, under a warmer climate, we expect more severe fire weather, more area burned, more ignitions and a longer fire season. Although there will be large spatial and temporal variation in the fire activity response to climate change. This field of research allows us to better understand the interactions and feedbacks between fire, climate, vegetation and humans and to identify vulnerable regions. Lastly, projections of fire activity for this century can be used to explore options for mitigation and adaptation.  相似文献   
8.
In the `Des Vieux Arbres' ecological reserve situated within northwestern Québec, 40 band dendrometers were installedon 7 of the major boreal tree species. The late Spring–early Summer daily radial activity registered in 1997 was related todaily weather variables. For each tree species, the daily mean i) cumulative radial increment and ii) radial activity indexedseries obtained by first-difference standardization were analyzed. The results indicate the existence of strong similarities among the 7 species. All showed strong synchronousfluctuations in radius during late winter and early spring. Thisperiod ended with a short but sharp increase in radial increments that marked the passage of water into the stem. Thisinitial swelling, less obvious in Pinus species was followed by a prolonged period of little change in radial activity. Meteorological data indicated that air temperature waspositively related to stem swelling during the late winter–earlyspring period. Both air and soil temperatures became negatively related to radial expansion once the passage of water has occurred in the stem. Starting in early June, all species registered a sustained increase in radial increments possiblyassociated with active cell division. After this, radial expansion was negatively related to air temperature and positively to rainfall.  相似文献   
9.
The predicted increase in climate warming will have profound impacts on forest ecosystems and landscapes in Canada because of increased temperature, and altered disturbance regimes. Climate change is predicted to be variable within Canada, and to cause considerable weather variability among years. Under a 2 × CO2 scenario, fire weather index (FWI) is predicted to rise over much of Ontario by 1.5 to 2 times. FWI may actually fall slightly, compared to current values, in central eastern Ontario (Abitibi), but for central-south Ontario it is expected to rise sharply by as much as 5 times current values. We predict that the combination of temperature rise and greater than average fire occurrence will result in a shrinkage of area covered by boreal forest towards the north and east; that some form of Great Lakes forest type will occupy most of central Ontario following the 5 C isotherm north; that pyrophilic species will become most common, especially jack pine and aspen; that patch sizes will initially decrease then expand resulting in considerable homogenization of forest landscapes; that there will be little 'old-growth' forest; and that landscape disequilibrium will be enhanced. If climate change occurs as rapidly as is predicted, then some species particularly those with heavy seeds may not be able to respond to the rapid changes and local extinctions are expected. Anthropogenically-altered species compositions in current forests, coupled with fire suppression over the past 50 years, may lead to forest landscapes that are different then were seen in the Holocene period, as described by paleoecological reconstructions. In particular, forests dominated by white pine in the south and black spruce in the middle north may not be common. Wildlife species that respond at the landscape level, i.e., those with body sizes >1 kg, will be most affected by changes in landscape structure. In particular we expect moose and caribou populations to decline significantly, while white-tailed deer will likely become abundant across Ontario and Quebec.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号