全文获取类型
收费全文 | 1099篇 |
免费 | 105篇 |
国内免费 | 169篇 |
专业分类
安全科学 | 206篇 |
废物处理 | 42篇 |
环保管理 | 84篇 |
综合类 | 662篇 |
基础理论 | 125篇 |
污染及防治 | 116篇 |
评价与监测 | 51篇 |
社会与环境 | 48篇 |
灾害及防治 | 39篇 |
出版年
2024年 | 17篇 |
2023年 | 42篇 |
2022年 | 59篇 |
2021年 | 59篇 |
2020年 | 32篇 |
2019年 | 46篇 |
2018年 | 39篇 |
2017年 | 41篇 |
2016年 | 43篇 |
2015年 | 39篇 |
2014年 | 72篇 |
2013年 | 36篇 |
2012年 | 41篇 |
2011年 | 56篇 |
2010年 | 49篇 |
2009年 | 52篇 |
2008年 | 52篇 |
2007年 | 42篇 |
2006年 | 53篇 |
2005年 | 53篇 |
2004年 | 47篇 |
2003年 | 43篇 |
2002年 | 18篇 |
2001年 | 40篇 |
2000年 | 39篇 |
1999年 | 33篇 |
1998年 | 35篇 |
1997年 | 21篇 |
1996年 | 28篇 |
1995年 | 25篇 |
1994年 | 18篇 |
1993年 | 13篇 |
1992年 | 10篇 |
1991年 | 24篇 |
1990年 | 16篇 |
1989年 | 10篇 |
1988年 | 9篇 |
1987年 | 3篇 |
1986年 | 6篇 |
1985年 | 5篇 |
1984年 | 1篇 |
1983年 | 4篇 |
1982年 | 1篇 |
1978年 | 1篇 |
排序方式: 共有1373条查询结果,搜索用时 15 毫秒
101.
UV-B辐射与酸雨胁迫对生菜生理特性及品质的影响 总被引:3,自引:0,他引:3
酸雨和紫外辐射的增强是全球环境问题之一,也是目前研究的热点。以生菜(lactuca)为实验材料,在大田条件下,研究了UV-B(280~320nm)辐射与模拟酸雨(AR)的胁迫对生菜生理特性和品质的影响。实验结果表明:UV-B辐射的增加降低了生菜植株的蒸腾速率、叶片中叶绿素a、叶绿素b、叶绿素a b的质量分数,且下降幅度随紫外辐射的增强而增大。UV-B辐射的增加提高了生菜叶片中类黄酮的含量,其增加幅度随紫外辐射的增强而增大。酸雨对生菜的蒸腾速率、叶绿素的质量分数也均有不同程度的影响,酸雨对类黄酮含量的影响不大.品质研究结果表明,随着UV-B辐射的增加,叶片中的水的质量分数持续降低,而抗坏血酸、可溶性糖、可溶性蛋白质的质量分数均先增加后减小,说明存在一个使品质发生突变的阈值范围.酸雨使得生菜中抗坏血酸的质量分数增加,并且增加幅度随pH值的减小而增大;随着酸雨酸度增强,植株中水质量分数持续降低;酸雨使生菜中可溶性糖、可溶性蛋白质的质量分数先减小后增加。在UV-B和酸雨的共同作用下,只有对类黄酮的影响具有明显的协同作用,其他指标表现不明显,但是可以看出复合作用下指标含量下降幅度明显大于单一因子的胁迫,并且下降幅度受UV-B辐射强度和酸雨pH的影响。 相似文献
102.
通过对千岛湖水体溶解氧值的监测研究表明 ,水体中的溶解氧值不稳定 ,在一天内有较大的波动 ,最低值出现在早晨日出之前 ,最高值出现在下午日落之前 ,水样极差夏季为 3 .2 1 mg/L ,冬季为2 .78mg/L;垂向分布不均匀 ,溶解氧值随水深的增加而减小 ,即表层为峰值 ,底层为谷值 ,在水深为80 m的水体中 ,极差夏季为 1 .41 mg/L,冬季为 1 .1 5 mg/L。由此可见 ,深水湖泊水体中的溶解氧分布无论在时间上还是在空间上都有较大的差别。在水环境质量监测中 ,每一水期对每一点位的溶解氧仅作二次监测 ,且每点次的采样时间又不一致 ,用这样的二次瞬时值… 相似文献
103.
104.
105.
微生物絮凝剂具有无毒性,绿色生产等优点,能够安全地用于给水处理及污废水处理.本文通过阳离子改性和与非生物絮凝剂复配的方法,提高MBF-NIII2的絮凝能力.以MBF-NIII2为原料,利用3-氯-2-羟丙基三甲基氯化铵(CHTAC)对其修饰,合成新型阳离子化的微生物絮凝剂(CMBF-NIII2)以CMBF-NIII2为研究主要对象,对校园生活污水进行处理.通过改变投加量、pH值、沉淀时间与温度,探究CMBF-NIII2絮凝能力的变化规律.将改性前的MBF-NIII2与改性后的CMBF-NIII2分别用于校园生活废水的处理,对比发现当CMBF-NIII2投加量为1.3 mL,pH 4.6,温度为60℃,沉降时间为40 min时,絮凝率达到91.5%,且COD去除率为87.8%,絮凝能力明显优于MBF-NIII2(絮凝率为47.61%),能更高效地絮凝生活污水.以MBF-NIII2与三氯化铁复配处理生活污水,结果表明MBF-NIII2和FeCl_3的投加量分别为10 mg·L~(-1)和15 mg·L~(-1)时,絮凝率可达88.06%,不仅比单独使用MBF-NIII2的处理效果好,还相对减少了絮凝剂的投加量. 相似文献
106.
为研究不同CO_2浓度升高水平对水稻叶绿素荧光特性的代际影响,基于CO_2浓度自动调控系统开展田间试验,以上一生长季经CO_2浓度升高处理(CO_2浓度比自然环境高40μmol·mol~(-1))的粳稻(Oryza sativa L.)种子(SI)和没有经过CO_2浓度升高处理的粳稻种子(SII)为试验材料,设置3种CO_2浓度水平:以背景大气CO_2浓度为对照(CK)、CO_2浓度比CK分别增加80μmol·mol~(-1)(T_1)和200μmol·mol~(-1)(T_2),测定叶片叶绿素荧光参数。结果表明,与CK相比,T_1处理使SI和SII蜡熟期的基础荧光(F_o)分别下降了8.6%(P=0.004)和8.0%(P=0.033),T_2处理使SI和SII扬花期的F_o分别下降了12.5%(P=0.033)和18.0%(P=0.015)。T_1处理使SI和SII蜡熟期的最大荧光(F_m)分别上升了10.1%(P=0.001)和11.0%(P=0.001),T_2处理使F_m分别上升了12.0%(P=0.000)和10.6%(P=0.001)。T_1处理使SI和SII蜡熟期的可变荧光(F_v)分别上升了16.2%(P=0.001)和17.7%(P=0.001),T_2处理使F_v分别上升了18.2%(P=0.000)和17.6%(P=0.000)。T_1处理使SI和SII蜡熟期的最大光化学效率(F_v/F_m)分别上升了6.2%(P=0.001)和6.5%(P=0.005),T_2处理使F_v/F_m分别上升了6.2%(P=0.001)和6.8%(P=0.003)。与CK相比,T_1和T_2处理使SI和SII的单位反应中心吸收的光能(ABS/RC)、单位反应中心捕获用于还原QA的能量(TRo/RC)、单位反应中心以热能形式耗散的能量(DIo/RC)在乳熟期、蜡熟期和完熟期下降,单位面积光合反应中心的数量(RC/CSo)在蜡熟期上升。SI与SII相比,它们的F_o、F_m、F_v、F_v/F_m、ABS/RC、TRo/RC、DIo/RC、RC/CSo、ETo/RC没有显著差异。研究表明CO_2浓度升高有利于提高水稻叶片光合系统的光能转换能力,对光合功能有促进作用,而叶绿素荧光特性对CO_2浓度升高的响应没有代际差异。 相似文献
107.
广州白云国际机场飞机大气污染物排放分析 总被引:7,自引:0,他引:7
根据收集到的2008-2012年广州白云国际机场航班起降次数,参考《珠江三角洲非道路移动源排放清单开发》飞机污染物估算方法及排放因子,计算出此期间机场飞机大气污染物排放量,并与2010-2012年广州市机动车污染物排放情况对比。结果表明:飞机大气污染物排放量随客运量的增长呈逐年上升趋势,而与机动车排放相比,飞机大气污染物排放量较小,故现阶段仍应以机动车作为移动源污染控制的重点。 相似文献
108.
沈阳市固定燃烧源挥发性有机化合物2007年排放清单研究 总被引:1,自引:0,他引:1
挥发性有机化合物(VOCs)与.OH的反应是对流层臭氧形成的重要化学过程,是导致城市光化学烟雾的根本原因。为建立沈阳市固定燃烧源VOCs排放清单,选取了电力热力行业、钢铁行业和秸秆燃烧3个主要排放源进行研究。结果表明:(1)2007年,沈阳市固定燃烧源VOCs排放总量为8 544.539 t,其中排放量最大的是秸秆燃烧,为6 317.115 t;其次是电力热力行业,为2 225.780 t;最小的是钢铁行业,为1.644 t。(2)沈阳市各区县固定燃烧源VOCs排放量由大到小排序依次为新民市、法库县、东陵区、康平县、辽中县、于洪区、苏家屯区、大东区、沈北新区、铁西区、沈河区、皇姑区、和平区;VOCs排放强度由大到小排序依次为大东区、沈河区、铁西区、东陵区、皇姑区、和平区、于洪区、苏家屯区、法库县、康平县、辽中县、沈北新区、新民市。 相似文献
109.
文中综述了氰化物的危害和含氰废水的来源以及目前处理含氰废水的方法。以工程实例重点介绍亚铁蓝法处理此废水的应用。亚铁蓝法除氰可分二级进行,第一级在中性条件总氰去除率达到80%以上,第二级直接在一级出水加碱调pH至8~9沉淀即可,通过二级处理总氰去除率达到95%左右。 相似文献
110.
对回收率计算公式的异议 总被引:1,自引:0,他引:1
在样品中加入标准物质测定其回收率,是目前实验室中常用而又方便的评价准确度的方法。各有关书籍所介绍的回收率计算公式为: 相似文献