首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   4篇
  国内免费   23篇
环保管理   4篇
综合类   35篇
基础理论   10篇
评价与监测   1篇
  2024年   1篇
  2023年   4篇
  2022年   2篇
  2021年   5篇
  2020年   5篇
  2019年   3篇
  2018年   1篇
  2016年   3篇
  2015年   2篇
  2014年   4篇
  2013年   3篇
  2012年   5篇
  2011年   1篇
  2010年   2篇
  2009年   3篇
  2008年   2篇
  2007年   1篇
  2004年   3篇
排序方式: 共有50条查询结果,搜索用时 15 毫秒
31.
以珠三角地区典型溶剂使用行业为研究对象,包括印刷业、家具制造业和电子元件及设备制造业,进行基于不同原料类型和末端治理的VOCs排放系数研究,对比研究了典型生产工艺不同类型的原料VOCs组分与含量特征,不同原料类型及末端综合治理情况对VOCs排放的影响,最终建立了三大行业典型生产工艺基于原料类型及末端综合治理情况的精细化VOCs排放系数.结果表明,印刷业有机原料中VOCs组分主要为乙酸乙酯、乙酸丙酯、异丙醇、正丙醇和乙醇等含氧VOCs,其占比约为原料总VOCs的60%~80%;家具制造业有机原料中含氧VOCs主要为乙酸乙酯和乙酸丁酯,占比约为原料总VOCs的45%~65%;电子元件和设备制造业有机原料VOCs组分主要为醇、醚、酚等含氧VOCs,苯系物及卤代烃等.印刷业VOCs治理前后综合排放系数分别为415. 2 kg·t~(-1)和184. 3 kg·t~(-1).其中,溶剂型原料为704. 9 kg·t~(-1)和200. 1 kg·t~(-1),水溶性原料为325. 6 kg·t~(-1)和230. 3 kg·t~(-1),UV型原料为197. 0 kg·t~(-1)和129. 0 kg·t~(-1),植物型原料为89. 0 kg·t~(-1)和89. 0 kg·t~(-1).家具制造业VOCs治理前后综合排放系数分别为379. 0 kg·t~(-1)和290. 2 kg·t~(-1).其中,溶剂型原料为603. 0 kg·t~(-1)和448. 5kg·t~(-1),水溶性原料为80. 0 kg·t~(-1)和80. 0 kg·t~(-1),粉末型原料为230. 0 kg·t~(-1)和184. 0 kg·t~(-1).电子元件及设备制造中,AC陶瓷电容器、CC陶瓷电容器、压敏电阻、铝电解电容器治理前后VOCs排放系数[单位:kg·(百万只)-1]分别为59. 7和40. 8、394. 1和269. 6、282. 4和193. 2、1. 2和1. 0.连续端子、漆包线和PCB印制电路板治理前后VOCs排放系数分别为56. 3kg·t~(-1)和42. 8 kg·t~(-1)、87. 2 kg·t~(-1)和28. 3 kg·t~(-1)、26. 4 kg·(100 m2)-1和11. 6 kg·(100 m2)-1.  相似文献   
32.
基于2015~2020年西北太平洋热带气旋路径资料、珠三角气象观测资料和臭氧监测数据,分析了西行热带气旋(A型)、东海转向热带气旋(B型)、近海影响热带气旋(C型)和远海热带气旋(D型)这4类热带气旋对珠三角臭氧浓度的影响.结果表明,在A型热带气旋影响下,区域臭氧浓度超标频率变化不大;在B型热带气旋影响下,珠三角臭氧超标频率明显升高;在C型热带气旋影响下,区域臭氧超标频率有较明显的升高,但是升高幅度弱于B型热带气旋;D型热带气旋远离中国大陆,对珠三角臭氧浓度影响很小.当A型或C型热带气旋发生时,珠三角区域臭氧日最大8 h平均浓度(MDA8)平均值的平均增幅在5μg·m-3左右,部分城市臭氧MDA8可能下降;B型热带气旋发生时,区域臭氧MDA8平均增幅为19μg·m-3,各城市臭氧浓度均明显增加,其中珠海、江门两市臭氧MDA8平均增幅较大,增幅超过了20μg·m-3.相对来说,珠三角西部城市臭氧浓度受热带气旋的影响更大.当发生B型热带气旋时,珠三角地区太阳辐射增强、日照变长、云量减少、气温升高和相对湿度降低,同时高空下沉气...  相似文献   
33.
印刷业一直是中国工业源挥发性有机物(VOCs)排放和管控的重点行业.然而,由于原料和工艺的复杂性和多样性,印刷业VOCs精细化排放清单及其减排潜力尚未被很好表征.考虑印刷业以往被忽视的半/中等挥发性有机化合物(S/IVOCs)排放,对现有VOCs排放系数进行改进,建立了2011~2020年中国印刷业VOCs精细化排放清单.并以2020年为基准年,通过情景分析法,预测了2030年不同情景VOCs排放量并分析其减排潜力.结果表明,2011~2020年中国印刷业VOCs排放量呈现先稳增长和下降的趋势,2020年相对2011年增加了29.6%,年均增长率为3.0%,主要与日益增长的印刷业市场消费需求和缺乏有效的行业VOCs综合治理措施有关.2020年中国印刷业VOCs排放量为86.1万t,凹版印刷和包装复合是贡献最大的两大工艺,占比分别为52.0%和28.7%.广东、江苏和浙江是VOCs排放贡献最大的省份,三省合计占比44.12%,是中国印刷业VOCs管控的重点地区.2030年印刷业基准情景、一般控制情景和严格控制情景VOCs排放量分别为118.7、 68.4和36.2万t,相对2020年分别...  相似文献   
34.
太原市大气PM2.5中碳质组成及变化特征   总被引:5,自引:4,他引:1  
采用DRI Model 2001A热/光碳分析仪测定了2009年冬季和2010年春季太原市区大气细粒子(PM2.5)中有机碳(OC)和元素碳(EC)的昼夜变化特征,分析了含碳物质的变化特征,并探讨了其来源.结果表明,PM2.5、OC、EC平均浓度水平和OC/EC平均值均呈现出冬季[(289.2±104.8)μg·m-3、(65.2±22.1)μg·m-3、(23.5±8.2)μg·m-3和2.8±0.3]高于春季[(248.6±68.6)μg·m-3、(29.7±6.2)μg·m-3、(20.2±5.4)μg·m-3和1.5±0.3],冬季夜晚[(309.3±150.0)μg·m-3、(74.6±19.5)μg·m-3、(24.3±6.6)μg·m-3和3.1±0.3]高于白天[(234.9±122.1)μg·m-3、(54.9±28.2)μg·m-3、(22.6±10.8)μg·m-3和2.5±0.5],春季白天[(292.5±120.8)μg·m-3、(32.7±10.5)μg·m-3、(22.7±10.1)μg·m-3和1.6±0.5]高于夜晚[(212.3±36.7)μg·m-3、(29.6±6.6)μg·m-3、(20.7±6.4)μg·m-3和1.5±0.2]的污染特征.这是因为冬季处于采暖期,特别是夜晚,煤和生物质燃烧量增加导致碳质颗粒物排放量增加以及大气温度低且稳定不利于污染物扩散;高的OC/EC是OC排放量增加所致而非二次有机碳(SOC)的贡献,因为气温低且太阳辐射弱不利于SOC的生成.春季白天PM2.5、OC和EC浓度水平高于夜晚可能是白天风速比夜晚大且相对湿度比夜晚低而更有利于城市扬尘形成所致,OC/EC高可能是白天温度较高且太阳辐射较强有利于SOC的生成.与国内其他城市相比,太原PM2.5、OC和EC均处于较高的浓度水平,表明太原碳质气溶胶污染严重,可能对城市灰霾形成有重要贡献.  相似文献   
35.
多环芳烃生物修复中的表面活性剂   总被引:11,自引:0,他引:11  
陈来国  冉勇 《生态环境》2004,13(1):88-91
由于其致癌、致突变和致畸性,多环芳烃(PAHs)成为环境中一类重要的有机污染物。生物修复是一种经济和有效的修复污染土壤的方法。由于PAHs低的水溶性、强的吸附性,使其生物可利用性降低,不利于生物修复。添加表面活性剂是一种常见的加强PAHs生物利用性的方法。文章概述了近年来在多环芳烃生物修复中关于表面活性剂的研究进展。  相似文献   
36.
糖类物质是一类重要的生物标志物,可用于大气颗粒物的来源识别.采用高效阴离子交换色谱-脉冲安培检测法(HPAEC-PAD)于2018年秋季对山西太原PM_(2.5)中的糖类物质进行定量分析.结果表明,此次检测共检出8种糖类物质,包括4种糖醇(肌醇、赤藓糖醇、阿拉伯糖醇、甘露糖醇)、3种脱水糖(左旋葡聚糖、甘露聚糖、半乳聚糖)和1种单糖(葡萄糖).3种脱水糖总浓度明显大于其他糖类,且与PM_(2.5)之间呈显著相关性(r=0.74、0.59、0.99),表明生物质燃烧对太原地区PM_(2.5)有明显贡献.应用正定矩阵因子分解模型(PMF5.0)进行源解析发现,太原秋季(9月)PM_(2.5)中的糖类物质主要来源于生物质燃烧、花粉和植物碎屑、真菌孢子和土壤灰尘4类.同时应用特征分子比值并结合太原地区农业生产情况识别出太原市的生物质燃烧源主要为硬木和作物残渣的混合贡献.  相似文献   
37.
广东南岭大气背景点气态元素汞含量变化特征   总被引:2,自引:0,他引:2  
利用高时间分辨率自动大气测汞仪(Tekran 2537B),于2012年6月~2013年5月对南岭地区大气气态元素汞(GEM)进行了为期1a的野外观测.结果表明,南岭地区年均GEM含量为(2.56±0.93)ng/m3,明显高于全球大气汞背景值(1.50~1.70ng/m3).GEM秋季含量最高[(3.03±1.08)ng/m3],春季最低[(2.30±0.69)ng/m3].日间GEM含量[(2.61±0.06)ng/m3]略高于夜间[(2.53±0.07)ng/m3],峰值出现在17:00.太阳辐射、气温、风速、相对湿度及本地源都对GEM日变化过程有一定的贡献.潜在贡献因子分析(PSCF)结果表明,大气汞的长距离迁移是南岭地区GEM的重要来源,全年南岭地区主要受源自于广西、湖南、广东和江西的大气汞迁移的共同影响.GEM主要源区与主要的有色金属冶炼厂分布有较强的一致性,暗示有色金属冶炼是影响南岭大气汞含量的重要大气汞排放源,而本地局部的燃煤排放也对监测点大气汞含量有一定的影响.  相似文献   
38.
利用Gc-Ms技术研究了大气不同粒径颗粒物上多溴联苯醚(PBDEs)的含量和分布,通过总有机碳(TOC)和PBDE单体含量的相关性探讨了它们在大气中的转移机制.研究结果表明,总颗粒物上∑15PBDEs含量为3745.5 pg·m-3,BDE47,99,209是三种主要单体.在<0.49μm粒径上∑15PBDEs含量最高(36.4%),<1.5μm的颗粒物上∑15PBDEs占61.9%.四溴和五溴的BDE47、66、100和99单体在不同粒径上的含量分布相似,约40%-50%分布在<0.49μm粒径的颗粒物上,约19%-23%分布在0.49-0.95μm粒径的颗粒物上;九溴的BDE208、207的分布和BDE47、99等明显不同,呈马鞍型分布;而十溴的BDE209主要分布在较粗颗粒上.结果表明大气中低溴PBDE对人体健康有重要影响,同时具有强的长距离迁移能力,BDE28、47、100和99与TOC间有良好的线性关系,可能表明这些低溴PBDE在大气中转移的主要机制是从气相分配进入颗粒相;而高溴的BDE207、208和209与TOC间相关性较差,可能表明高溴PBDE进人大气中的主要机制是依附在较大颗粒上直接进入大气.  相似文献   
39.
根据典型城市调查与统计数据收集得到的广东省活动水平数据,采用自上而下和自下而上相结合的排放因子法和GIS技术,建立了广东省2018年3 km×3 km高分辨率温室气体排放清单.估算范围包括能源活动、工业生产过程、农业活动、土地利用变化和林业、废弃物处理以及电力调入(出)间接排放等6大类CO2、CH4和N2O这3种温室气体.结果表明,广东省2018年CO2、CH4和N2O的排放量分别为8.5×108、1.9×106和1.1×105 t,以CO2当量计分别为8.5×108、4.0×107和3.4×107 t,合计9.2×108 t.CO2是广东省主要的温室气体排放种类,占全省温室气体总排放量的92.0%,能源活动和电力调入(出)间接排放是广东省温室气体排放的主要部门,排放占比分别为77.9%和7.6%,合计占比为85.5%.从温室气体排放的空间分布情况来看,全省大部分地区温室气体表现为排放源,部分区域表现为汇;温室气体排放主要集中在珠三角地区,并呈现一定的沿路网和航道分布的特征;温室气体高排放网格主要为大型电厂、钢铁厂和水泥厂等高耗能企业所在地.  相似文献   
40.
利用高时间分辨率自动测汞仪(Tekran 2537B)于2017年6月~2018年5月对武夷山气态元素汞(GEM)进行了连续1a的观测.结果表明,武夷山GEM年均浓度为(1.70±0.43)ng/m3,稍高于北半球背景值,表明武夷山受到一定程度的大气汞污染.GEM浓度表现为冬季>秋季>春季>夏季,季风和风速是影响武夷山GEM季节变化的主要因素.武夷山四季GEM表现为不同的日变化特征,早上8:00之后,春秋季GEM继续呈现下降趋势,其他季节则呈现先升后降再上升,并在晚上不同时刻出现峰值.GEM值白天低于晚上,这与风速和汞的长距离迁移有关.后向轨迹和浓度权重轨迹分析结果表明,偏西风背景下污染气团经江西向武夷山输送是大气汞迁移的主要路径,而江西和福建中北部为武夷山大气汞污染的潜在源区.△GEM/△CO值表明武夷山GEM汞污染主要来源于人为工业排放,生物质燃烧贡献较弱.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号