首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   16篇
  国内免费   4篇
安全科学   1篇
废物处理   1篇
环保管理   2篇
综合类   33篇
基础理论   4篇
污染及防治   1篇
评价与监测   8篇
社会与环境   3篇
  2024年   1篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   3篇
  2017年   3篇
  2016年   6篇
  2015年   5篇
  2014年   4篇
  2013年   7篇
  2012年   5篇
  2011年   7篇
  2010年   1篇
  2009年   4篇
  2008年   1篇
  1997年   1篇
排序方式: 共有53条查询结果,搜索用时 638 毫秒
31.
对某烧结厂半干法烟气脱硫灰进行了多次化学成分分析,结合半干法烟气脱硫相关化学理论和合理近似实现了脱硫灰成分及Ca/S的数学表达,建立了基于Ca/S的半干法烧结烟气脱硫灰化学成分模型,并应用于具体生产实践。  相似文献   
32.
固定源排放颗粒物采样方法的研究进展   总被引:5,自引:0,他引:5  
固定源是大气可吸入颗粒物的主要来源之一,而目前国内对固定源排放颗粒物的监测和研究还相对比较薄弱,缺乏必要的技术手段和设备.文章总结了国内外固定源标准采样方法,分析了现有采样技术和采样设备的不足之处.而模拟烟气排放到大气真实环境中发生的物理化学变化的稀释采样正在成为研究固定污染源颗粒物排放特征的重要手段.文章阐述了固定源...  相似文献   
33.
韩斌  郑浩  翟殿清 《资源节约与环保》2013,(10):104+121-104,121
随着汽车保有量的急剧增加,车内空气污染控制、检测与汽车内饰环保材料应用等,成为整个汽车行业迫切需要解决的问题。  相似文献   
34.
李刚  吴丽萍  杨文  韩斌  白志鹏 《环境科学学报》2016,36(12):4295-4302
为了研究APEC减排期间不同模态颗粒物数浓度分布特征,使用扫描电迁移率粒径分析仪(Scanning Mobility Particle Sizer,3936,TSI,4~737 nm)和空气动力学粒径谱仪(Aerodynamic Particle Sizer,3321,TSI,0.54~19.81 μm)对2014年APEC会议期间北京市空气颗粒物进行观测.根据核模态、爱根核模态、积聚模态和粗粒子模态颗粒物的数浓度变化和粒谱分布特征.结果表明:APEC会议期间(减排第2阶段,11月6日-12日)空气颗粒物主要以爱根核模态和积聚模态颗粒物为主,其数浓度分别为9.96×103 cm-3和9.19×103 cm-3,其次是核模态颗粒物,其数浓度为1.16×103 cm-3,粗粒子模态颗粒物数浓度相对较低,为13 cm-3,其中11月2、6和12日颗粒物总数浓度均出现最低谷值,分别为1.1×104 cm-3、1.0×104 cm-3和6.3×103 cm-3.相比减排前,减排期核模态颗粒物浓度降低最多,平均降低39.1%,爱根核模态和积聚模态缓慢降低,但与往年同期相比各模态颗粒物数浓度均有明显下降.  相似文献   
35.
王恺  赵宏  刘爱霞  韩斌  白志鹏 《中国环境科学》2009,29(10):1029-1033
针对空气污染导致大气能见度降低的预测研究,构建了一个风险神经网络模型,模型以6个气象因子、3种主要污染物(SO2,NO2,PM10)浓度和能见度作为输入因子,输出为24h后能见度的预测值.该模型对低能见度情况的数据给予相对较高的风险值,而对高能见度情况的数据则给予相对较低的风险值.以天津市2003~2007年的气象数据对模型进行检验,结果表明该风险神经网络模型优于传统神经网络模型和线性回归模型.  相似文献   
36.
为分析华北地区南部城市漯河市秋冬季黑碳(BC)浓度和来源的变化特征,使用7波段黑碳仪(AE33)于2022年9月1日~2023年2月28日在漯河市测量BC浓度,并使用改进后的钾离子动态约束黑碳仪模型进行源解析.此外,对元旦及春节期间烟花爆竹燃放对e BCEC和K+的影响进行分析,以期对华北南部城市的BC污染控制提供合理的建议.结果表明,漯河市秋冬季e BCEC平均浓度为3.62μg/m3,冬季浓度(5.17μg/m3)约为秋季浓度(2.15μg/m3)的2.4倍.e BCEC昼夜浓度变化呈双峰型,峰值出现在8:00和21:00.使用改进后的黑碳仪模型解析出秋冬季BC主要来自化石燃料燃烧的贡献(74.69%±15.63%),其次为生物质燃烧贡献(25.31%±15.63%),控制化石燃料燃烧源对BC污染的改善更加有效.元旦、元宵节和春节等烟花爆竹燃放时段e BCEC的浓度均值分别为11.45、8.42和8.12μg/m3,分别为非烟花爆竹时段的2.6、1.9和1.8倍;春节、元宵节和元旦烟花爆竹燃放时段K+浓度分别为26....  相似文献   
37.
轻型汽油车VOCs排放特征和排放因子台架测试研究   总被引:7,自引:0,他引:7       下载免费PDF全文
为研究轻型汽油车尾气中VOCs的排放特征和排放因子,按照《轻型汽车污染物排放限值及测量方法》(中国Ⅲ、Ⅳ阶段)中要求,采用底盘测功机对国内现有不同品牌轻型汽车进行台架试验,并利用3级冷阱预浓缩GC-MS方法对尾气样品中VOCs物种进行定量分析.结果表明,尾气样品中共有68种VOCs被定量检出,其中芳香烃种类最多,占38.7%,烷烃占29.8%,烯烃(包含炔烃)占27.1%.不同品牌轻型车源排放谱特征基本吻合.轻型汽车的总VOCs排放因子为0.01~0.46g/km,前3位物种分别为乙烯、甲苯和苯.  相似文献   
38.
天津秋冬季PM2.5碳组分化学特征与来源分析   总被引:13,自引:2,他引:11       下载免费PDF全文
霍静  李彭辉  韩斌  陆炳  丁潇  白志鹏  王斌 《中国环境科学》2011,31(12):1937-1942
为研究天津大气PM2.5中有机碳和元素碳的特征,于2009年9月4日到2010年2月25日在天津3个监测点位采集PM2.5样品,分析了PM2.5颗粒中元素碳和有机碳的含量特征、与气象条件的相互关系、以及碳组分的来源.结果表明3个监测点位PM2.5的平均质量浓度为123.85μg/m3;TC的平均浓度为18.76μg/m3,其中OC的平均浓度为14.48μg/m3,EC的平均浓度为4.27μg/m3,日均OC和EC浓度分别占PM2.5的11.7%和3.5%.秋季SOC的估算值为5.1μg/m3, 占OC的40.7%、PM2.5的4.3%;冬季SOC的估算值为6.5μg/m3, 占OC的35.7%,PM2.5的4.9%.观测期间EC与温度呈比较好的负相关关系; OC、EC、TC的浓度与风速有较好的负相关性.48h后推气流轨迹结果显示局地盘旋的气流(L)和来自天津北方或西北方区域气流(N/NW)有较高的碳组分浓度;天津大气PM2.5中碳组分受包括生物质燃烧、汽车排放、燃煤和道路扬尘混合来源影响.  相似文献   
39.
天津市可吸入颗粒物及元素室内外相关性   总被引:4,自引:0,他引:4       下载免费PDF全文
选取天津市某社区作为采样点,于2009年8、9月(代表非采暖季)和11、12月(代表采暖季)采集了室内和室外可吸入颗粒物(PM10)样品,以研究天津市PM10及元素的室内外相关性.结果表明,采暖季PM10的室外平均浓度为198.88μg/m3.非采暖季和采暖季PM10的室内外浓度比(I/O比值)的变化范围分别为0.14~3.22和0.10~3.70,平均值分别为0.88和0.96,室内外相关系数(R2)分别为0.32和0.46.Al、Ca、Fe等元素的浓度均高于1μg/m3,V、Mn、Cu等元素浓度变化范围为0.01~1μg/m3;非采暖季和采暖季元素I/O比值的变化范围分别为0.62~1.04和0.41~0.92.以采暖季为例,使用PM10质量(元素)浓度的质量平衡模型计算的有效穿透因子(Finf)、贡献值、贡献率分别为0.26(0.39)、50.84μg/m3(78.69μg/m3)、43.97%(50.05%),两种结果存在差异的原因是2种模型对Finf的假设不同.  相似文献   
40.
环境空气中卤代烃作为挥发性有机物的子类,不仅影响生态环境而且危害人体健康,为了解典型工业城市环境空气中卤代烃的污染特征、来源及健康风险,于2021年夏季和冬季使用5800-GM型挥发性有机物气质联用在线分析仪(GC-MS/FID)对淄博市环境空气卤代烃进行监测. 结果表明:①夏季和冬季卤代烃平均体积分数分别为9.0×10?9和7.6×10?9,其中,限制卤代烃(《蒙特利尔破坏臭氧层物质管制议定书》长期管控且淘汰物种)占比分别为16.2%和19.2%,且限制卤代烃体积分数基本不存在昼夜差异;非限制卤代烃(《蒙特利尔破坏臭氧层物质管制议定书》未列入管控的物种)占比分别为83.8%和80.8%,其体积分数呈早晚高、中午低的双峰结构. 夏季和冬季体积分数较高的物种均为二氯甲烷、一氯甲烷和1,2-二氯乙烷,三者占比之和在夏季和冬季分别为68.7%和63.4%. ②环境空气卤代烃的主要来源包括溶剂使用源、氟氯烃储库泄漏源、化学原料药源和工业排放源,其在夏季贡献率分别为40.3%、30.0%、16.0%和13.7%,在冬季贡献率分别为31.3%、30.6%、24.5%和13.7%. ③健康风险评价结果表明,1,2-二氯乙烷、1,2-二氯丙烷、三氯甲烷是具有致癌风险的主要卤代烃物种;工业排放源是造成致癌风险的最主要来源,在夏季和冬季贡献率分别为32.7%和46.6%. 研究显示,淄博市夏季和冬季环境空气体积分数较高的卤代烃为二氯甲烷、一氯甲烷和1,2-二氯乙烷,溶剂使用源和工业排放源分别为卤代烃和致癌风险的主要来源,需要重点关注.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号