首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   13篇
  国内免费   144篇
安全科学   3篇
环保管理   4篇
综合类   145篇
基础理论   9篇
污染及防治   32篇
评价与监测   2篇
社会与环境   1篇
  2024年   4篇
  2023年   8篇
  2022年   22篇
  2021年   23篇
  2020年   14篇
  2019年   11篇
  2018年   15篇
  2017年   6篇
  2016年   7篇
  2015年   13篇
  2014年   10篇
  2013年   7篇
  2012年   8篇
  2011年   6篇
  2010年   3篇
  2009年   8篇
  2008年   5篇
  2007年   4篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  2002年   2篇
  2001年   3篇
  2000年   6篇
  1999年   4篇
  1987年   1篇
  1977年   1篇
排序方式: 共有196条查询结果,搜索用时 78 毫秒
61.
兽用抗生素在提高畜禽生产性能、防治疾病方面发挥着重要作用,目前全球超过一半以上抗生素用于畜禽养殖,畜禽养殖源耐药病原菌、抗性基因及其传播风险愈益得到人们的重视。我国是畜禽养殖和抗生素使用大国,但兽用抗生素使用、病原菌耐药水平及其抗性基因类型等数据却较为缺乏,不利于今后畜禽养殖源耐药病原菌及其传播风险的控制。因此,本文通过文献调研,对我国和主要发达国家的兽用抗生素使用情况、畜禽养殖源耐药病原菌及其携带的抗性基因、基因移动元件以及向环境传播的途径进行分析、总结,以期为规范合理用药、降低耐药病原菌及其抗性基因传播风险,建立从畜禽养殖场至公共环境全过程的抗性污染控制链条提供借鉴。  相似文献   
62.
我国污泥生物干化过程中含氮气体(NH_3、N_2O、NO)排放的数据十分缺乏,尤其是NO,因其化学性质极其活泼,在以往的研究中甚少涉及.本研究以东北某大型污泥生物干化厂的连续流强制通风槽式污泥生物干化为研究对象,通过现场试验,考察不同通风策略下干化效率以及含氮气体、温室气体的排放特征.结果表明,当污泥初始含水率约50%时,采用前期供氧为主、中期温度控制为主、后期以除湿和散热为目的的通风策略,可以明显加快污泥干化速率(试验组在第11 d时的含水率为36.6%,对照组为42%),提升干化效果(最终含水率试验组为33.6%,对照组为37.6%),减少氨气累积排放量5%(试验组氨气累积排放为208 mg·m~(-3),对照组为219.8 mg·m~(-3));同时降低温室气体累积排放当量[试验组每吨干物料的温室气体排放当量(eCO_2)为3.61 kg·t~(-1),对照组为3.73 kg·t~(-1)].但NO累积排放量试验组比对照组高出15.9%(试验组为1.9g·m~(-2),对照组为1.6 g·m~(-2)).  相似文献   
63.
温榆河是北京市重要的生态廊道.本研究基于历史文献资料和现场调查,比较分析了2006、2011和2018年温榆河水环境质量与浮游植物群落结构的时空变化,探讨了浮游植物群落变化与水温T、溶解氧DO、pH和营养盐之间的相互关系.结果表明,温榆河水环境质量总体好转,经历了重度污染→污染遏制→水质改善过程,水污染物已从NH4+-N为主转向TN为主.NH4+-N、TN的平均浓度和平均超标倍数从2011年的15. 52~19. 16 mg·L-1、9. 34~8. 58倍和20. 21~19. 58 mg·L-1、12. 47~8. 79倍降低到2018年的1. 93~2. 66 mg·L-1、0. 29~0. 33倍和5. 66~6. 79 mg·L-1、2. 77~2. 39倍,并且温榆河和支流清河的DO和NH4+-N浓度已基本达到水功能区划目标.与水质改善过程相对应,浮游植...  相似文献   
64.
基于Sb(锑)的植物及动物毒理学数据缺乏以及保护生态受体的土壤Sb的环境基准尚未建立的现状,通过收集和筛选文献中Sb的毒理学数据并补充开展不同土壤类型的跳虫和植物的毒理学试验,建立了Sb的生物毒性预测模型,并以此为依据对收集及试验毒理学数据进行归一化处理,以消除土壤性质的影响.此外,进一步利用SSD(species sensitivity distribution,物种敏感度分布法)推导我国4种典型情景土壤中Sb的HC5(hazardous concentration,能够保护95%物种的生态安全阈值),最终建立基于土壤性质参数的环境基准计算模型.结果表明:①不同土壤中Sb对跳虫的毒性差异较大,跳虫毒性阈值EC10(effect concentration,10%抑制效应浓度)与土壤pH呈负相关,与w(SOC)(SOC为土壤有机碳)呈正相关,即随着土壤pH增加或w(SOC)降低,Sb对跳虫的生物有效性随之增加,进而导致EC10降低.②通过毒性阈值与土壤性质之间的多元回归分析可知,土壤pH和SOC可较好地预测Sb的生物毒性,植物和无脊椎动物的R2(决定系数)分别为0.778和0.867.③利用SSD得到11个物种在4种典型情景土壤中的HC5分别为55.12、28.28、28.08及14.55 mg/kg,推导出PNECtotal(predicted no effect concentration,预测无效应浓度)分别为28.96、15.54、15.44及8.68 mg/kg,计算模型为PNECtotal=-5.811pH+0.587[SOC]+55.480+Cb([SOC]为土壤有机碳含量,Cb土壤Sb背景浓度).鉴于此,建议以中性土壤中Sb的环境基准值作为我国农用地土壤Sb污染风险筛选值制订的参考依据,即农用地土壤w(Sb)限值定为15 mg/kg.   相似文献   
65.
为进一步优化微波-过氧化氢-碱(MW-H2O2-OH)预处理污泥的水解酸化操作参数,在前期单因素试验研究的基础上,采用3因素3水平的响应面分析法,建立了水解温度、水解酸化时间和蛋白酶投加量分别对总VFA浓度和SCOD浓度影响的回归模型,并进行了碳源组成及其可利用性的评估.结果表明,模型极显著,拟合度、可信度和精确度高,数据合理,试验误差小.通过对回归模型的求解及综合考虑,得到优化的工艺条件为水解温度53.13℃、水解酸化时间4 d、蛋白酶投加量30.14 mg·g-1(蛋白酶/总固体浓度(TS),下同).验证结果表明,总VFA浓度和SCOD浓度的相对误差均在3%以内,说明该模型能很好地优化微波-过氧化氢-碱预处理后污泥的水解酸化操作条件和预测总VFA浓度和SCOD浓度.在碳源组成方面,优化工艺条件下SCOD占TCOD(混合液总COD)的44.56%,总VFA、溶解性蛋白质、溶解性糖类分别占SCOD的66.42%、19.34%和6.89%,碳源以总VFA为主,其中,VFA以乙酸(35.11%)、异戊酸(20.14%)、正丁酸(19.94%)、丙酸(16.90%)为主.三维荧光光谱的分析结果表明,污泥上清液中以溶解性微生物产物类酪氨酸和类色氨酸为主.优化组的污泥上清液作为碳源时的反硝化速率(0.184g·g-1·d-1,以每g VSS每天反硝化的NO-3-N量(g)计,下同)远远高于未优化组(0.065 g·g-1·d-1),碳源可利用性介于甲醇和乙酸钠之间,碳源可利用性较好.  相似文献   
66.
提高污泥溶胞效率是强化污泥厌氧处理的关键.为加强污泥微波预处理溶胞效果,本研究分别考察了常压、半封闭条件下二氧化钛颗粒、碳质材料作为敏化剂与过氧化氢联合进行微波污泥预处理的效果.结果表明,碳质材料敏化剂对微波、过氧化氢-微波污泥预处理产生了负作用,降低了污泥的溶胞效果,而二氧化钛能有效增加污泥中营养物质的释放.当二氧化钛颗粒投加量为0.12 g·g~(-1)干污泥时,SCOD、PO_4~(3-)-P的浓度比单独微波处理分别增加了11.86%、61%;当二氧化钛颗粒投加量为0.24 g·g~(-1)干污泥时,NH_4~+-N释放比单独微波处理高出27.78%.微波辐射作用下投加二氧化钛颗粒产生了羟基自由基,强化了过氧化氢-微波对污泥细胞的氧化作用.  相似文献   
67.
多环芳烃(polycyclic aromatic hydrocarbons, PAHs)是影响污泥安全资源化的重要因素.以无机药剂调理的深度脱水污泥有利于污泥的好氧堆肥处置,但对于该处置过程中深度脱水污泥PAHs的降解和风险削减尚缺乏认识.主要以复合铝镁盐调理的深度脱水污泥为对象,分析不同好氧堆肥条件下污泥中PAHs的含量、来源和风险,以明确好氧堆肥工艺过程对风险有机物的削减效果及潜在影响因素.通过气相色谱-质谱仪、特征比值法和风险熵法分析污泥中美国EPA优先控制的16种PAHs的含量、来源和风险,重点考察了深度脱水污泥在好氧堆肥前后PAHs含量和风险变化.结果表明:(1)16种PAHs在6组污泥中均有检出,其总量范围为777.78~1 878.38 ng/g,组成以中高环芳烃为主,主要来源为石油污染和燃烧的混合源.(2)堆肥28 d后6组污泥中PAHs的去除率分别为37.66%、54.29%、12.38%、15.40%、56.78%和34.25%,表明添加颗粒大的返混料或辅料更有利于PAHs的降解.(3)污泥中的PAHs整体处于中低风险,好氧堆肥后除组1的苯并[a]芘和组2的芴由低风...  相似文献   
68.
北运河沙河水库沉积物营养盐分布特征及其溯源分析   总被引:3,自引:0,他引:3  
通过采集沙河水库表层(0~20 cm)沉积物样品,分析了沉积物中氮、磷、有机质的分布特征,并结合排污口附近和水库典型区域沉积物中有机质(Organic Matter, OM)和溶解性有机物(Dissolved Organic Matter, DOM)的荧光光谱特征、分子量分布特征(Molecular Weight Distribution, MWD),研究了点源污染对沙河水库沉积物营养盐分布的潜在影响.结果表明,表层沉积物间隙水中氨氮(NH~+_4-N)、磷酸盐(PO■-P)平均浓度及沉积物中总氮(TN)、总磷(TP)的平均含量依次为(52.13±40.32)、(1.75±1.88) mg·L~(-1)与(2853.81±1501.93)、(1496.00±454.06) mg·kg~(-1).库区沉积物中TN、TP含量由库上游((1898.00±1047.54)、(1264.00±104.61) mg·kg~(-1))经库心区((2996.67±1405.13)、(1340.00±332.47) mg·kg~(-1))至库下游((4500.00±920.00)、(1750.00±10.00) mg·kg~(-1))依次增高.沉积物C/N比分析表明,点源污染区与库区沉积物中有机质来源于陆源与自生生物源的混合源.而三维荧光光谱和分子量分布的分析表明,点源污染区与库区沉积物中DOM的组成特性具有一致性,且主要来源于自生生物源.Pearson相关性分析表明,沉积物中营养盐(TN、TP)与有机质具有显著相关关系(p0.01).这些结果清楚地表明,点源污染区沉积物中高的营养盐、有机质含量是库区污染物累积的潜在重要来源.  相似文献   
69.
为了研究厌氧氨氧化(Anammox)工艺处理不同浓度废水时的脱氮性能、微生物群落与污泥特性的变化,构建了升流式污泥床反应器(Upflow anaerobic sludge bed,UASB),研究不同进水浓度下氮素的转化与去除效率,并结合微生物分析手段探究各阶段微生物的群落演替与污泥特性变化.结果表明,当处理高浓度进水时,氨氮和总氮去除率分别为99.33%和92.96%;当切换为低浓度进水时,氨氮去除率为91.99%,总氮去除率降低至74.09%,硝酸盐产生比例升高.扫描电镜结果发现,活性污泥由以短杆菌为主逐步转变为以球菌为主的聚集体,随着水力负荷增大,污泥聚集、颗粒增大,溶解性EPS降低,污泥疏水性增强.微生物群落结构分析结果表明,Proteobacteria在反应器内大量存在,丰度达到了29.68%,反应器内存在Candidatus Brocadia和Candidatus Jettenia两种厌氧氨氧化菌.在高浓度进水阶段,Candidatus Jettenia的丰度较高(1.24%);当进水换为低浓度时,Candidatus Brocadia的丰度达到了1.23%,替代Candi...  相似文献   
70.
针对我国城市生活污水碳氮比低、处理成本高及氮磷同步去除存在碳源竞争等问题,构建了一体式膜曝气生物膜反应器(Membrane aerated biofilm reactor, MABR),分别采用纯生物膜系统和生物膜-絮体污泥复合系统,逐步实现了部分亚硝化-厌氧氨氧化与生物除磷工艺在单一反应器中的耦合及低碳氮比城市生活污水中氮、磷的高效去除.结果表明,第1阶段(纯生物膜系统),在进水中仅含有氨氮的条件下, 部分亚硝化-厌氧氨氧化工艺的NH4+-N和TN去除率分别为65.39%和50.67%.第2阶段(生物膜-絮体污泥复合系统),进水中增加了有机物,在COD/TN为3的条件下,TN和PO43--P的去除率分别达到89.90%和70.42%,实现了氮和磷的同步高效去除.微生物群落分析结果表明,反应器内存在大量的变形菌门(Proteobacteria)和拟杆菌门(Bacteroidota),其中,Proteobacteria在生物膜和絮体污泥均有分布,而Bacteroidota主要分布于絮体污泥;反应器内还检测到了Candidatus KueneniaCandidatus JetteniaCandidatus Brocadia 3种厌氧氨氧化菌,且 Candidatus Brocadia为优势菌属,其在生物膜上的丰度达到了3.23%;此外,Candidatus Competibacter、Defluviicoccus等聚糖菌和聚磷菌Candidatus AccumulibacterDechloromonas在反应器内均有大量富集,共同构成了该生物膜-絮体污泥复合系统,实现了低碳氮比城市生活污水的同步脱氮除磷.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号