首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   141篇
  免费   0篇
  国内免费   1篇
安全科学   4篇
废物处理   5篇
环保管理   5篇
综合类   8篇
基础理论   23篇
污染及防治   56篇
评价与监测   25篇
社会与环境   16篇
  2023年   5篇
  2022年   10篇
  2021年   14篇
  2019年   1篇
  2018年   8篇
  2017年   4篇
  2016年   6篇
  2015年   4篇
  2014年   9篇
  2013年   16篇
  2012年   12篇
  2011年   7篇
  2010年   5篇
  2009年   4篇
  2008年   4篇
  2007年   3篇
  2006年   8篇
  2005年   5篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
  2001年   4篇
  2000年   1篇
  1999年   1篇
  1996年   1篇
  1969年   1篇
  1960年   1篇
  1956年   1篇
  1954年   1篇
排序方式: 共有142条查询结果,搜索用时 15 毫秒
91.
92.
93.
Environment, Development and Sustainability - The large-scale water-induced erosion is one of the most determining elements on land degradation in subtropical monsoon-dominated region. From this...  相似文献   
94.
95.
The paper deals with 45 species of 21 genera of fresh water blue green algae (BGA) from three different agro-climatic zones of Uttar Pradesh. Samples were collected from different habitats varying in physico-chemical properties. Out of 45 species, 13 species belonged to order Chroococcales, 31 to order Nostocales, while only 1 species belonged to order Stigonimatales i.e. Fischerella mucicola. The physico-chemical parameters like pH, temperature, dissolved oxygen, electrical conductivity, nitrate, nitrite and rainfall play an important role in the periodicity of BGA. A positive correlation was found between dissolved oxygen (DO) of different ponds and species diversity, except in the case of western region of Uttar Pradesh (Farukhabad and Mahoba districts) where a positive correlation was found in electrical conductivity and total dissolved solids.  相似文献   
96.
Ali MB  Tripathi RD  Rai UN  Pal A  Singh SP 《Chemosphere》1999,39(12):2171-2182
Lake Nainital is the sole source of drinking water for the local people and even to majority of tourists. In background of lake utility and its importance at national level, such study is essential which is focused on toxic metal pollution and current nutrient status of the lake and their magnification by algae and macrophytes. Study has shown that lake water is rich in nutrients which supports growth of many aquatic macrophytes and algal blooms. Besides, water is contaminated with metals like Cr, Cu, Fe, Mn, Ni, Pb and Zn. Concentration of some of them like Fe, Pb and Ni were higher than the recommended maximum permissible limits. Concentration of these metals were also found high in lake sediments. The level of metals amongst various components of lake varied considerably in different season. Plants and algae growing therein accumulated appreciable amount of metals and water roots of Salix being more efficient than others. High metal removing potential of these plants may be significant for biomonitoring studies and could be a useful phytoremediation technology to restore water quality by harvesting submerged and floating biomass inhabiting littoral zone of the lake.  相似文献   
97.
A dynamic mathematical model was developed for removal of arsenic from drinking water by chemical coagulation-precipitation and was validated experimentally in a bench-scale set-up. While examining arsenic removal efficiency of the scheme under different operating conditions, coagulant dose, pH and degree of oxidation were found to have pronounced impact. Removal efficiency of 91-92% was achieved for synthetic feed water spiked with 1 mg/L arsenic and pre-oxidized by potassium permanganate at optimum pH and coagulant dose. Model predictions corroborated well with the experimental findings (the overall correlation coefficient being 0.9895) indicating the capability of the model in predicting performance of such a treatment plant under different operating conditions. Menu-driven, user-friendly Visual Basic software developed in the study will be very handy in quick performance analysis. The simulation is expected to be very useful in full-scale design and operation of the treatment plants for removal of arsenic from drinking water.  相似文献   
98.
Toxicity assessment of heavy metals with Nostoc muscorum L   总被引:1,自引:0,他引:1  
Heavy metals in aquatic ecosystem (Mn, Ni, Zn, Cu) were tested for their toxicity against Nostoc muscorum L., a common fresh water phytoplankton, with respect to chlorophyll, protein, total carbohydrate and starch contents along with growth (OD). Mn showed stimulatory effect up to 1.5 ppm for all the observed parameters. However, Ni, Zn and Cu (0.1, 0.2, 0.3, 0.4 and 0.5 ppm) showed adverse effects even at 0.1 ppm. Chlorophyll was most sensitive parameter followed by carbohydrate, protein and starch. Ni was most toxic to N. muscorum followed by Cu and Zn. The IC50 for Ni was 0.1 ppm for growth, chlorophyll and protein, while total carbohydrate and starch showed IC50 at 0.3 and 0.4 ppm, respectively. The IC50 for Cu was recorded at 0.2 ppm for all the parameters. Zn showed IC50 at 0.3 ppm for growth, chlorophyll, protein and starch at 0.4 ppm for carbohydrate. This study can be applied as bioassay using cyanobacteria for toxicity assessment of various industrial wastes in aquatic ecosystem.  相似文献   
99.
Genotoxicity of pressmud (PM) to Allium cepa was investigated to assess its toxic potential and to elucidate the effect of vermicomposting to reduce its toxicity. The PM produced as a waste by product of the sugar cane industry was mixed with cow dung (CD) at different ratios of 0:100 (V0), 25:75 (V25), 50:50 (V50), 75:25 (V75) and 100:0 (V100) (PM:CD) on a dry weight basis for vermicomposting with Eisenia fetida. Different concentrations of 100 % PM sludge extract (10 %, 20 %, 40 %, 60 %, 80 % and 100 %) and negative control (distilled water) and positive control (maleic hydrazide) were analyzed with A. cepa assay to evaluate frequency of chromosomal aberrations before and after vermicomposting. Percent aberration was greatest (30.8 %) after exposure to 100 % PM extract after 6 h but was reduced to 20.3 % after vermicomposting. Exposure to the extract induced c-mitosis, delayed anaphase, laggards, stickiness and vagrant aberrations. Microscopic examination of root meristem exposed to PM sludge extract showed significant inhibition of mitotic index. Also, the mitotic index decreased with increase in concentration of PM sludge extract. After vermicomposting the mitotic index was increased. However, increasing percentages of PM significantly affected the growth and fecundity of the worms and maximum population size was reached in the 25:75 (PM:CD) feed mixture. Nitrogen, phosphorus, sodium, electrical conductivity (EC) and pH increased from initial feed mixture to the final products (i.e., vermicompost), while organic carbon, C/N ratio and potassium declined in all products of vermicomposting. Scanning electron microscopy (SEM) was recorded to identify the changes in texture with numerous surface irregularities and high porosity that proves to be good vermicompost manure. It could be concluded that vermicomposting could be an important tool to reduce the toxicity of PM as evidenced by the results of genotoxicity.  相似文献   
100.
Plants have to counteract unavoidable stress-caused anomalies such as oxidative stress to sustain their lives and serve heterotrophic organisms including humans. Among major enzymatic antioxidants, catalase (CAT; EC 1.11.1.6) and ascorbate peroxidase (APX; EC 1.11.1.11) are representative heme enzymes meant for metabolizing stress-provoked reactive oxygen species (ROS; such as H2O2) and controlling their potential impacts on cellular metabolism and functions. CAT mainly occurs in peroxisomes and catalyzes the dismutation reaction without requiring any reductant; whereas, APX has a higher affinity for H2O2 and utilizes ascorbate (AsA) as specific electron donor for the reduction of H2O2 into H2O in organelles including chloroplasts, cytosol, mitochondria, and peroxisomes. Literature is extensive on the glutathione-associated H2O2-metabolizing systems in plants. However, discussion is meager or scattered in the literature available on the biochemical and genomic characterization as well as techniques for the assays of CAT and APX and their modulation in plants under abiotic stresses. This paper aims (a) to introduce oxidative stress-causative factors and highlights their relationship with abiotic stresses in plants; (b) to overview structure, occurrence, and significance of CAT and APX in plants; (c) to summarize the principles of current technologies used to assay CAT and APX in plants; (d) to appraise available literature on the modulation of CAT and APX in plants under major abiotic stresses; and finally, (e) to consider a brief cross-talk on the CAT and APX, and this also highlights the aspects unexplored so far.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号