首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1346篇
  免费   3篇
  国内免费   51篇
安全科学   46篇
废物处理   112篇
环保管理   115篇
综合类   135篇
基础理论   216篇
污染及防治   537篇
评价与监测   133篇
社会与环境   93篇
灾害及防治   13篇
  2023年   68篇
  2022年   170篇
  2021年   147篇
  2020年   48篇
  2019年   51篇
  2018年   64篇
  2017年   66篇
  2016年   73篇
  2015年   38篇
  2014年   64篇
  2013年   123篇
  2012年   56篇
  2011年   54篇
  2010年   38篇
  2009年   44篇
  2008年   42篇
  2007年   38篇
  2006年   37篇
  2005年   29篇
  2004年   24篇
  2003年   14篇
  2002年   16篇
  2001年   10篇
  2000年   11篇
  1999年   5篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1994年   5篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1989年   2篇
  1987年   3篇
  1984年   5篇
  1983年   7篇
  1982年   6篇
  1981年   2篇
  1979年   3篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1967年   1篇
  1966年   2篇
  1964年   2篇
  1963年   1篇
  1961年   1篇
排序方式: 共有1400条查询结果,搜索用时 171 毫秒
991.
Nanoemulsions are particularly suitable as a platform in the development of delivery systems for lipophilic functional agents. Current research describes the formation of oil-in-water (O/W) diazinon nanoemulsions using synthetic and natural additives by adopting a high-energy (ultrasound) emulsification method. The diazinon nanoemulsions were spontaneously formed by adding dropwise a mixture of diazinon, solvent and co-solvent in an aqueous solution containing a surfactant (tween or lecithin) with continuous stirring. The nanoemulsions were then formed by ultra-sonication. The effects of three levels of active ingredient, solvent, co-solvent, surfactant, sonication time and sonication cycle and power were performed by Minitab software to design the experiment. Effects of these factors on droplet size, polydispersity index (PDI), viscosity and pH of nanoemulsions were investigated. The results of the modeling showed that the experimental data could be adequately adapted in a second-order polynomial model with a multiple regression coefficient r2 of 0.821 for the prediction of particle size, PDI and viscosity. The long-term and thermodynamic stability of the prepared nanoemulsions were tested. The droplet size and morphology of the nanoemulsions were measured by dynamic light scattering (DLS) and transmission electron microscopy (TEM). On this basis, a water-insoluble insecticide diazinon was incorporated into 26 optimized nanoemulsion systems to demonstrate potential applications in pest control. The results of DLS and TEM measurements showed that most of prepared nanoemulsions had an almost monodisperse droplet size distribution (PDI < 200 nm). Incorporation of diazinon had no significant effect on the size and stability of the nanoemulsions and the formulated nanoemulsion remained stable after four months of storage.  相似文献   
992.
Natural bituminous coal was used as a precursor in the synthesis of different modified products. The modification of coal was performed by treating it with nitric acid (N-coal), coating its surface by zinc oxide nanoparticles (Z-coal), and converting it into porous graphite (PG). The effect of modification processes on the structures, morphologies, and optical properties was followed by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectrum (FT-IR), and UV/VIS spectrophotometer analysis. The surface of N-coal grains becomes smoother than the surface of raw coal grains due to the removal of the associated impurities and the formation of nitrogen function groups. For Z-coal, the whole surface of coal grains appears to be completely covered by agglomerated ZnO nanoparticles of massive density and irregular shapes. The average crystallite size of the formed ZnO is ~22.2 nm and density of dislocations is 2.029 × 10?3 dislocation/nm2. Also, the removal of safranin-T dye by natural bituminous coal and its modified forms was investigated as a function of contact time, adsorbent mass, initial dye concentration, and pH value. At pH 8, the PG showed higher efficiency (96%) than Z-coal (93.5%), N-coal (74.5%), and natural coal (62%) after 2 h for 0.1 g on 100 mg/L dye. The obtained results are well fitted by pseudo-second-order kinetic than by intraparticle diffusion and Elovich kinetic models for the adsorption by N-coal, Z-coal, and PG, whereas the adsorption by raw coal is well fitted with both pseudo-second-order and Elovich kinetic models. The Langmuir isotherm model fits well the equilibrium adsorption isotherm of safranin by raw coal and its modified forms. The values of maximum adsorption capacity were calculated for raw coal, N-coal, Z-coal, and PG to be 21.3, 27.4, 32.46, and 33.67 mg/g, respectively. A monolayer model with one energy and a monolayer model with two energies as advanced equilibrium models were investigated for more physical interpretation of the adsorption process. The calculated parameters (number of adsorbed molecules per site and number of receptor sites per unit mass) reflected the role of modification processes in the adsorption behavior of safranin.
Graphical abstract High volatile bituminous coal and its modified forms have been used for the removal of Safranin-T dye from aqueous solution.
  相似文献   
993.
Environmental Science and Pollution Research - The present work is to evaluate the neurotoxicity induced by pyrethroid insecticide “Deltamethrin” at 0.32&nbsp;mg/kg/day in two main...  相似文献   
994.
Wastewater and sludge management and research in Oman: An overview   总被引:1,自引:0,他引:1  
It is well recognized that management of wastewater and sludge is a critical environmental issue in many countries. Wastewater treatment and sludge production take place under different technical, economic, and social contexts, thus requiring different approaches and involving different solutions. In most cases, a regular and environmentally safe wastewater treatment and associated sludge management requires the development of realistic and enforceable regulations, as well as treatment systems appropriate to local circumstances. The main objective of this paper is to provide useful information about the current wastewater and sludge treatment, management, regulations, and research in Oman. Based on the review and discussion, the wastewater treatment and sludge management in Oman has been evolving over the years. Further, the land application of sewage sludge should encourage revision of existing standards, regulations, and policies for the management and beneficial use of sewage sludge in Oman.

Implications: Wastewater treatment and sludge management in Oman have been evolving over the years. Sludge utilization has been a challenge due to its association with human waste. Therefore, composting of sewage sludge is the best option in agriculture activities. Sludge and wastewater utilization can add up positively in the economic aspects of the country in terms of creating jobs and improving annual income rate. The number of research projects done on wastewater reuse and other ongoing ones related to the land application of sewage sludge should encourage revision of existing standards, regulations, and policies for the management and beneficial use of sewage sludge in Oman.  相似文献   

995.
Groundwater remediation was evaluated for combined autotrophic and heterotrophic denitrification under high (154 mg/L as CaCO3) and low (95 mg/L as CaCO3) alkaline conditions. Two levels of acetate (47 and 94 mg/L) and ethanol (24 and 48 mg/L) were added to the reactors. Obtained denitrification rates were 2.89, 2.58, 3.55, 1.96, and 2.0 mg-N/L?·?h for high alkaline conditions, whereas under low alkaline conditions has given 2.36, 1.94, 2.47, 2.74, and 2.29 mg-N/L?·?h for control, 47 and 94 mg/L acetate, and 24 and 48 mg/L ethanol, respectively. Nitrite was accumulated for controls but reactors with acetate and ethanol did not accumulate nitrite. Acetate and ethanol addition decreased sulfate to nitrate ratios in the range of 4.5–7.58 for high alkaline conditions (12.77 for control) and 4.43–6.78 for low alkaline conditions (7.90 for control). Acetate was more efficient compared with ethanol in controlling sulfate production and pH maintenance.  相似文献   
996.
Abstract

Brain tissue samples of nice (7.5 g from 25 mouse brains and lamb (25 g) were homogenized and subcellular fractions prepared in order to assay the distribution of neurotoxic esterase (NTE) activity. The specific inhibitor, N,N‐diisopropylphosphorodiamidic fluoride (mipafox) was synthesized and purified. Maximum specific activity of NTE was reached in the microsomal fraction (110,000 g) while the enzyme activity in the soluble fraction (110,000 g) was extremely low. This subcellular distribution of NTE activity in mammal brains is an original contribution. Brain microsomal fraction is suggested to be a more reliable source for the highest activity of NTE. The specific activity of NTE of lamb brain was much higher than that of mouse brain. This night help interpretation of the characteristic species variation in susceptibility to NTE inhibitors which are known to be potent delayed neurotoxic agents.  相似文献   
997.
The present study aims to evaluate the competitive biosorption of lead, cadmium, copper, and arsenic ions by using native algae. A series of experiments were carried out in a batch reactor to obtain equilibrium data for adsorption of single, binary, ternary, and quaternary metal solutions. The biosorption of these metals is based on ion exchange mechanism accompanied by the release of light metals such as calcium, magnesium, and sodium. Experimental parameters such as pH, initial metal concentrations, and temperature were studied. The optimum pH found for removal were 5 for Cd2+ and As3+ and 3 and 4 for Pb2+ and Cu2+, respectively. Fourier transformation infrared spectroscopy analysis was used to find the effects of functional groups of algae in biosorption process. The results showed that Pb2+ made a greater change in the functional groups of algal biomass due to high affinity to this metal. An ion exchange model was found suitable for describing the biosorption process. The affinity constants sequence calculated for single system was K Pb > K Cu > K Cd > K As; these values reduced in binary, ternary, and quaternary systems. In addition, the experimental data showed that the biosorption of the four metals fitted well the pseudo-second-order kinetics model.  相似文献   
998.
Attempts were made in this study to examine the effectiveness of sequencing batch reactor (SBR) for the treatment of beverage industrial wastewater. The SBR was operated at three different organic loading rates (OLRs): 2, 1.7 and 1.1 kg COD/m3 d. Results of continuous long-term operation showed that by decreasing OLR from 2 to 1.7 kg COD/m3 day, the removal efficiency was increased from 95.5 to 99.3% for COD, from 95.3 to 98.1% for BOD and from 87 to 97.7% for TSS. While further decreasing of the OLR to 1.1 kg COD/m3 day, there is no significant adverse effect on organics removal. Also, residual total nitrogen (TN) concentration decreased by decreasing the OLR. However, increasing the OLRs exerted a slightly negative effect on the removal of total phosphorous. On the other hand, the experimental data indicated that the substrate utilization kinetic followed Monod's kinetics model approximately. The maximum specific substrate utilization rate (micro(max), half velocity coefficient (Ks), growth yield coefficient (Y) and decay coefficient (Kd) were 2.94 d(-1), 15.22 mg/L, 0.2384 g VSS/g COD and 0.2019 h(-1), respectively.  相似文献   
999.
The nitrates (NO(3)-N) lost through subsurface drainage in the Midwest often exceed concentrations that cause deleterious effects on the receiving streams and lead to hypoxic conditions in the northern Gulf of Mexico. The use of drainage and water quality models along with observed data analysis may provide new insight into the water and nutrient balance in drained agricultural lands and enable evaluation of appropriate measures for reducing NO(3)-N losses. DRAINMOD-NII, a carbon (C) and nitrogen (N) simulation model, was field tested for the high organic matter Drummer soil in Indiana and used to predict the effects of fertilizer application rate and drainage water management (DWM) on NO-N losses through subsurface drainage. The model was calibrated and validated for continuous corn (Zea mays L.) (CC) and corn-soybean [Glycine max (L.) Merr.] (CS) rotation treatments separately using 7 yr of drain flow and NO(3)-N concentration data. Among the treatments, the Nash-Sutcliffe efficiency of the monthly NO(3)-N loss predictions ranged from 0.30 to 0.86, and the percent error varied from -19 to 9%. The medians of the observed and predicted monthly NO(3)-N losses were not significantly different. When the fertilizer application rate was reduced ~20%, the predicted NO(3)-N losses in drain flow from the CC treatments was reduced 17% (95% confidence interval [CI], 11-25), while losses from the CS treatment were reduced by 10% (95% CI, 1-15). With DWM, the predicted average annual drain flow was reduced by about 56% (95% CI, 49-67), while the average annual NO(3)-N losses through drain flow were reduced by about 46% (95% CI, 32-57) for both tested crop rotations. However, the simulated NO(3)-N losses in surface runoff increased by about 3 to 4 kg ha(-1) with DWM. For the simulated conditions at the study site, implementing DWM along with reduced fertilizer application rates would be the best strategy to achieve the highest NO(3)-N loss reductions to surface water. The suggested best strategies would reduce the NO(3)-N losses to surface water by 38% (95% CI, 29-46) for the CC treatments and by 32% (95% CI, 23-40) for the CS treatments.  相似文献   
1000.
This paper focuses on identified challenges for sustainable development across various sectors and the actions needed by different institutions and individuals for the achievement of a sustainable path. For finding solutions that impede sustainable development, emphasis is given to collaborative, inter- and trans-disciplinary problem-solving approaches. The ‘ecological modernization’ view is based on the belief that science and technology will result in continuous improvement in human welfare, while the emerging postmodern ‘ecological paradigm’ also emphasizes harmony with nature and other actors. Global societies are in the midst of a number of challenges: (1) implementation of existing and new hard- and soft-law instruments, (2) the degradation of natural resources, (3) an inadequate global mechanism for handling environmental and social responsibilities by the international community, (4) an unbalanced distribution of wealth, locally and internationally, (5) unethical and unsustainable business practices, (6) consequent unethical and unsustainable consumer practices, (7) selective application of ethical principles by rich countries and (8) the absence of norms of good conduct by powerful and wealthy peoples pertaining to sustainable development. Governments, civil societies, academicians, indigenous peoples, communities, businesses and international organizations need to become engaged in the formulation and enforcement of environmentally and ecologically sound development policies along with relevant research, education, training, awareness and a change in social values as provided in the Earth Charter to support actions for sustainable development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号