首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   731篇
  免费   1篇
  国内免费   29篇
安全科学   14篇
废物处理   55篇
环保管理   56篇
综合类   88篇
基础理论   128篇
污染及防治   288篇
评价与监测   84篇
社会与环境   40篇
灾害及防治   8篇
  2023年   51篇
  2022年   98篇
  2021年   88篇
  2020年   21篇
  2019年   29篇
  2018年   36篇
  2017年   28篇
  2016年   41篇
  2015年   19篇
  2014年   35篇
  2013年   70篇
  2012年   23篇
  2011年   27篇
  2010年   23篇
  2009年   12篇
  2008年   24篇
  2007年   23篇
  2006年   17篇
  2005年   14篇
  2004年   12篇
  2003年   8篇
  2002年   5篇
  2001年   4篇
  2000年   9篇
  1999年   2篇
  1998年   1篇
  1995年   1篇
  1994年   1篇
  1993年   3篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1984年   2篇
  1983年   5篇
  1982年   5篇
  1981年   2篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1974年   1篇
  1970年   1篇
  1969年   1篇
  1967年   1篇
  1966年   1篇
  1964年   2篇
排序方式: 共有761条查询结果,搜索用时 0 毫秒
61.
The treatment of hydrophilic porous ceramics to render them hydrophobic and wetting to non-aqueous phase liquids (NAPLs) is frequently needed in multiphase flow experiments to control the flow or to measure the pressure of the NAPL. In addition, research dealing with soil wettability implies a need for hydrophobic or NAPL-wet soils. The traditional procedure, which has been widely used in literature, to render hydrophilic porous ceramics and soils hydrophobic is achieved by placing the hydrophilic solid in a 5% (by volume) octadecyltrichlorosilane (OTS) solution in ethanol followed by rinsing in ethanol. This research assesses the use of this procedure as it was found that this treatment procedure resulted in excess OTS on the surface of treated hydrophobic solids which can dissolve in an organic phase and in turn alter the wettability condition of adjacent hydrophilic soils. A modified procedure, which results in hydrophobic solids free of excess OTS, is presented.  相似文献   
62.
63.
The present study deals with detailed hydrochemical assessment of groundwater within the Saq aquifer. The Saq aquifer which extends through the NW part of Saudi Arabia is one of the major sources of groundwater supply. Groundwater samples were collected from about 295 groundwater wells and analyzed for various physico-chemical parameters such as electrical conductivity (EC), pH, temperature, total dissolved solids (TDS), Na+, K+, Ca2+, Mg2+, CO3 ?, HCO3 ?, Cl?, SO4 2?, and NO3 ?. Groundwater in the area is slightly alkaline and hard in nature. Electrical conductivity (EC) varies between 284 and 9,902?μS/cm with an average value of 1,599.4 μS/cm. The groundwater is highly mineralized with approximately 30 % of the samples having major ion concentrations above the WHO permissible limits. The NO3 ? concentration varies between 0.4 and 318.2 mg/l. The depth distribution of NO3 ? concentration shows higher concentration at shallow depths with a gradual decrease at deeper depths. As far as drinking water quality criteria are concerned, study shows that about 33 % of samples are unfit for use. A detailed assessment of groundwater quality in relation to agriculture use reveals that 21 % samples are unsuitable for irrigation. Using Piper’s classification, groundwater was classified into five different groups. Majority of the samples show Mix-Cl-SO4- and Na-Cl-types water. The abundances of Ca2+ and Mg2+ over alkalis infer mixed type of groundwater facies and reverse exchange reactions. The groundwater has acquired unique chemical characteristics through prolonged rock-water interactions, percolation of irrigation return water, and reactions at vadose zone.  相似文献   
64.
Environmental Chemistry Letters - Research has recently focused on combinational therapy using nanocarriers to overcome the obstacles associated with conventional therapy of lung cancer. The...  相似文献   
65.
Abstract

Ground-level ozone is a secondary pollutant that has recently gained notoriety for its detrimental effects on human and vegetation health. In this paper, a systematic approach is applied to develop artificial neural network (ANN) models for ground-level ozone (O3) prediction in Edmonton, Alberta, Canada, using ambient monitoring data for input. The intent of these models is to provide regulatory agencies with a tool for addressing data gaps in ambient monitoring information and predicting O3 events. The models are used to determine the meteorological conditions and precursors that most affect O3 concentrations. O3 time-series effects and the efficacy of the systematic approach are also assessed. The developed models showed good predictive success, with coefficient of multiple determination values ranging from 0.75 to 0.94 for forecasts up to 2 hr in advance. The inputs most important for O3 prediction were temperature and concentrations of nitric oxide, total hydrocarbons, sulfur dioxide, and nitrogen dioxide.  相似文献   
66.
The Gharb region in Morocco is an important agricultural zone where soils receive pesticide treatments and organic amendments to increase yields. The groundwater aquifer in the Gharb region is relatively shallow and thus vulnerable. The objective of this work was to study the influence of organic amendments on diuron, cyhalofop-butyl and procymidone leaching through undisturbed soil columns. Two soils were sampled from the Gharb region, a Dehs (sandy soil) and a R’mel (loamy clay soil). Following elution (124.5 mm), the amount of pesticide residues in the leachates of the sandy soil (0.06–0.21 %) was lower than in those of the loamy clay soil (0.20–0.36 %), which was probably due to preferential flow through the loamy clay soil. The amount of procymidone leached through the amended soil columns was greater than the control for the sandy soil only. The organic amendments did not significantly influence diuron and cyhalofop-butyl leaching in either of the soils. The application of organic amendments affected the amounts of dissolved organic matter (DOM) eluted and thus pesticide leaching as a function of soil-type. Nevertheless, in some case, the formation of pesticide-DOM complexes appeared to promote pesticide leaching, thus increasing groundwater contamination risks.  相似文献   
67.
Sorption–desorption of the insecticide imidacloprid 1-[(6-chloro-3-pyridinyl)-methyl]-N-nitro-2-imidazolidinimine onto a lacustrine sandy clay loam Egyptian soil and its clay and humic acid (HA) fractions was investigated in 24-h batch equilibrium experiments. Imidacloprid (IMDA) sorption–desorption isotherms onto the three sorbents were found to belong to a non-linear L-type and were best described by the Freundlich model. The value of the IMDA adsorption distribution coefficient, Kdads, varied according to its initial concentration and was ranged 40–84 for HA, 14–58 for clay and 1.85–4.15 for bulk soil. Freundlich sorption coefficient, Kfads, values were 63.0, 39.7 and 4.0 for HA, clay and bulk soil, respectively. The normalized soil Koc value for imidacloprid sorption was ~800 indicating its slight mobility in soils. Nonlinear sorption isotherms were indicated by 1/nads values <1 for all sorbents. Values of the hysteresis index (H) were <1, indicating the irreversibility of imidacloprid sorption process with all tested sorbents. Gibbs free energy (ΔG) values indicated a spontaneous and physicosorption process for IMDA and a more favorable sorption to HA than clay and soil. In conclusion, although the humic acid fraction showed the highest capacity and affinity for imidacloprid sorption, the clay fraction contributed to approximately 95% of soil-sorbed insecticide. Clay and humic acid fractions were found to be the major two factors controlling IMDA sorption in soils. The slight mobility of IMDA in soils and the hysteresis phenomenon associated with the irreversibility of its sorption onto, mainly, clay and organic matter of soils make its leachability unlikely to occur.  相似文献   
68.
The present study is aimed at assessing the ability of Bacillus sp.JDM-2-1 and Staphylococcus capitis to reduce hexavalent chromium into its trivalent form.Bacillus sp.JDM-2-1 could tolerate Cr(Ⅵ) (4800 μg/mL) and S.capitis could tolerate Cr(Ⅵ) (2800 μg/mL).Both organisms were able to resist Cd2+ (50 μg/mL),Cu2+ (200 μg/mL),Pb2+ (800 μg/mL),Hg2+ (50 μg/mL) and Ni2+ (4000 μg/mL).S.capitis resisted Zn2+ at 700 μg/mL while Bacillus sp.JDM-2-1 only showed resistance up to 50 μg/mL.Bacillus sp.JDM-2-1 and S.capitis showed optimum growth at pH 6 and 7,respectively,while both bacteria showed optimum growth at 37℃.Bacillus sp.JDM-2-1 and S.capitis could reduce 85% and 81% of hexavalent chromium from the medium after 96 h and were also capable of reducing hexavalent chromium 86% and 89%,respectively,from the industrial effluents after 144 h.Cell free extracts of Bacillus sp.JDM-2-1 and S.capitis showed reduction of 83% and 70% at concentration of 10 μg Cr(Ⅵ)/mL,respectively.The presence of an induced protein having molecular weight around 25 kDa in the presence of chromium points out a possible role of this protein in chromium reduction.The bacterial isolates can be exploited for bioremediation of hexavalent chromium containing wastes,since they seem to have the potential to reduce the toxic hexavalent form to its nontoxic trivalent form.  相似文献   
69.
Six soil profiles irrigated and non-irrigated with sewage wastewater were investigated for soil pH, electrical conductivity (EC), organic matter (OM), and CaCO3. The distributions and chemical fractions of Cu, Zn, Cd, and Pb, and their lability were also studied. The results indicated that pH, EC, OM, and CaCO3, as well as metal fractionation in soil profiles were affected by wastewater irrigation, especially in the surface layer. The surface layer (0-15 cm) irrigated with wastewater exhibited a 0.6 unit decrease in soil pH, a 40.6% decrease in CaCO3, and a 200% increase in EC as compared with that of the non-irrigated soil. The soil OM increased from 0.04% to 0.35% in the surface layer. The irrigation of soil with wastewater resulted in transformation of metals from the carbonate fraction (CARB) towards the exchangeable (EXCH), Fe-Mn oxide (ERO), and organic (OM) fraction for Zn, towards the EXCH, the OM, and residual fraction for Cu, and towards the exchangeable (EXCH) fraction for Cd. It was concluded that the use of sewage wastewater led to salt accumulation and an increase in the readily labile fraction of Zn, Cu, and Cd in the surface layer. Therefore, this reason may limit the use of wastewater under arid and semi-arid conditions.  相似文献   
70.
The study aimed to determine the hazardous health effects of pesticides exposure in the factory workers by measuring plasma cholinesterase (PChE), pesticides residues, and renal and hepatic biochemical markers. In addition, we also assessed the knowledge, attitudes, and safety practices adopted by the industrial workers. The study was conducted in three different sizes of factories located in Lahore (large), Multan (medium), and Karachi (small) in Pakistan. Total 238 adult males consisting of 184 pesticide industrial workers (exposed group) from large-sized (67), medium-sized (61), small-sized (56) industrial formulation factories, and 54 controls (unexposed) were included in the study. All the participants were male of aged 18 to 58 years. PChE levels were estimated by Ellmann’s method. Plasma pesticides residue analysis was performed by using reverse phase C-18 on high-performance liquid chromatograph and GC with NPD detector. Plasma alanine aminotransferase (ALT), aspartate aminotransferase (AST), creatinine, urea, and gamma glutamyltransferase (GGT) were measured on Selectra E auto analyzer. Plasma and C-reactive protein was analyzed by Immulite 1000. The results revealed a significant decrease in plasma post exposure PChE levels (<30%) as compared to baseline in the workers of small (29%) and medium (8%) industrial units (p?< 0.001). Plasma cypermethrin, endosulfan, imidacloprid, thiodicarb, carbofuran, and methamidophos levels were found to be higher than allowable daily intake. Serum AST, ALT, creatinine GGT, malondialdehyde, total antioxidant, and CRP were significantly raised among the workers of small and medium pesticide formulation factories as compared to large industrial unit and controls (p?< 0.001). The study demonstrated that unsafe practices among small- and medium-sized pesticides industrial workers cause significant increase in pesticide exposure, oxidative stress, and derangement of hepatic and renal function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号