首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1020篇
  免费   28篇
  国内免费   9篇
安全科学   41篇
废物处理   35篇
环保管理   221篇
综合类   115篇
基础理论   235篇
污染及防治   280篇
评价与监测   64篇
社会与环境   59篇
灾害及防治   7篇
  2023年   3篇
  2022年   11篇
  2021年   17篇
  2020年   13篇
  2019年   19篇
  2018年   32篇
  2017年   25篇
  2016年   26篇
  2015年   24篇
  2014年   17篇
  2013年   120篇
  2012年   40篇
  2011年   59篇
  2010年   34篇
  2009年   39篇
  2008年   48篇
  2007年   61篇
  2006年   50篇
  2005年   31篇
  2004年   26篇
  2003年   49篇
  2002年   43篇
  2001年   28篇
  2000年   19篇
  1999年   6篇
  1998年   12篇
  1997年   10篇
  1996年   11篇
  1995年   12篇
  1994年   20篇
  1993年   15篇
  1992年   4篇
  1991年   8篇
  1990年   13篇
  1989年   5篇
  1988年   7篇
  1986年   8篇
  1985年   9篇
  1984年   8篇
  1983年   13篇
  1982年   14篇
  1981年   11篇
  1980年   8篇
  1979年   6篇
  1978年   6篇
  1977年   4篇
  1974年   4篇
  1971年   2篇
  1964年   1篇
  1954年   1篇
排序方式: 共有1057条查询结果,搜索用时 15 毫秒
41.
Determining a remeasurement frequency of variables over time is required in monitoring environmental systems. This article demonstrates methods based on regression modeling and spatio-temporal variability to determine the time interval to remeasure the ground and vegetation cover factor on permanent plots for monitoring a soil erosion system. The spatio-temporal variability methods include use of historical data to predict semivariograms, modeling average temporal variability, and temporal interpolation by two-step kriging. The results show that for the cover factor, the relative errors of the prediction increase with an increased length of time interval between remeasurements when using the regression and semivariogram models. Given precision or accuracy requirements, appropriate time intervals can be determined. However, the remeasurement frequency also varies depending on the prediction interval time. As an alternative method, the range parameter of a semivariogram model can be used to quantify average temporal variability that approximates the maximum time interval between remeasurements. This method is simpler than regression and semivariogram modeling, but it requires a long-term dataset based on permanent plots. In addition, the temporal interpolation by two-step kriging is also used to determine the time interval. This method is applicable when remeasurements in time are not sufficient. If spatial and temporal remeasurements are sufficient, it can be expanded and applied to design spatial and temporal sampling simultaneously.  相似文献   
42.
This paper reviews the effects of past forest management on carbon stocks in the United States, and the challenges for managing forest carbon resources in the 21st century. Forests in the United States were in approximate carbon balance with the atmosphere from 1600-1800. Utilization and land clearing caused a large pulse of forest carbon emissions during the 19th century, followed by regrowth and net forest carbon sequestration in the 20th century. Recent data and knowledge of the general behavior of forests after disturbance suggest that the rate of forest carbon sequestration is declining. A goal of an additional 100 to 200 Tg C/yr of forest carbon sequestration is achievable, but would require investment in inventory and monitoring, development of technology and practices, and assistance for land managers.  相似文献   
43.
This paper compiles a detailed set of in situ chemical oxidation (ISCO) lessons learned pertaining to design, execution, and safety based on global experiences over the last 20 years. While the benefits of a “correct” application are known (e.g., cost effectiveness, speed, permanence of treatment), history also provides examples of a variety of “incorrect” applications. These provide an opportunity to highlight recurring themes that resulted in failures. ISCO is, and will continue to provide, an important remedial tool for site remediation, particularly as a component of a multifaceted approach for addressing large and complex sites. Future success, however, requires an objective understanding of both the benefits and the limitations of the technology. The ability to learn from the mistakes of the past provides an opportunity to eliminate, or at least minimize, them in the future. Over the last 25 years of ISCO application, process understanding and knowledge have improved and evolved. This paper combines a thorough discussion of lessons learned through decades of ISCO implementation throughout all aspects of ISCO projects with an analysis of changes to the ISCO remediation market. By discussing the interplay of these two themes and providing recommendations from collective lessons learned, we hope to improve the future of safe, cost‐effective, and successful applications of ISCO.  相似文献   
44.
45.
In this paper we address two important aspects of micro-scale urban airflow model evaluation: (a) the identification of key flow features as dictated by the physics of the problem and as captured by the simulations, and (b) the comparison of important model output parameters (mean flows and fluctuations) with experimental data. A series of mesh-adaptive large eddy simulations (LES) was carried out for the study of air flows within two intersecting street canyons with varying building configurations. The novelty of the approach lies in the combination of LES with mesh adaptivity, which allows a variable-filter length and the implementation of an anisotropic eddy-viscosity model. Both coarse and fine-mesh simulations were carried out, using single and parallel-processor systems respectively. The simulations showed clearly that the expected flow patterns such as the street canyon recirculation and the street-mouth vortices, as well as the exchange of air flow at the street intersections, can readily be captured by the mesh-adaptive LES.In addition, the detailed comparisons of mean flows and fluctuations of the resolved velocity field with the measured data showed that the simulation results agreed well with the patterns and trends of the wind tunnel measurements. In most cases the finer-mesh simulations improved considerably the accuracy of the mean flows, especially for the symmetrical configuration. The improvement in the predicted fluctuations was less obvious, with several detector locations underpredicting the measured values, although the overall comparison was also satisfactory. The typical errors for the mean flows for all three building configurations were less than 30%, whilst for the velocity fluctuations less that 40%. Both the simulated means flows and turbulence levels were generally more accurate in the streets parallel to the wind (streamwise direction) than in the streets normal to the wind.  相似文献   
46.
We sampled 92 wetlands from four different basins in the United States to quantify observer repeatability in rapid wetland condition assessment using the Delaware Rapid Assessment Protocol (DERAP). In the Inland Bays basin of Delaware, 58 wetland sites were sampled by multiple observers with varying levels of experience (novice to expert) following a thorough training workshop. In the Nanticoke (Delaware/Maryland), Cuyahoga (Ohio), and John Day (Oregon) basins, 34 wetlands were sampled by two expert teams of observers with minimal protocol training. The variance in observer to observer scoring at each site was used to calculate pooled standard deviations (SDpool), coefficients of variation, and signal-to-noise ratios for each survey. The results showed that the experience level of the observer had little impact on the repeatability of the final rapid assessment score. Training, however, had a large impact on observer to observer repeatability. The SDpool in the Inland Bay survey with training (2.2 points out of a 0–30 score) was about half that observed in the other three basins where observers had minimal training (SDpool = 4.2 points). Using the results from the survey with training, we would expect that two sites assessed by different, trained observers who obtain DERAP scores differing by more than 4 points are highly likely to differ in ecological condition, and that sites with scores that differ by 2 or fewer points are within variability that can be attributed to observer differences.  相似文献   
47.
Along with the growing boating population and the number of boats in use on limited inland waterways, boater expectations of setting density, safety perceptions, and the associated impacts on their experience (e.g., satisfaction) are becoming increasingly important. The primary purpose of this article was to explore a recreational boating crowding–satisfaction model derived from previous work using safety and enjoyment as mediating variables. We also tested our crowding–satisfaction model among day and overnight users. Our analysis revealed no significant difference between day and overnight users for any of the relationships tested in our model. Our final model indicated as respondents’ expectations for seeing people increased along with their feelings of being crowded, they were more inclined to consider the conditions on the lake as being unsafe. They were also more inclined to indicate that the number of people they had seen on the lake detracted from their boating experience. Respondents’ satisfaction was tied to their perceptions of crowding. Mediating variables illustrated that the relationship was conditioned by perceptions of safety and enjoyment. Analysis of the indirect effect observed in our study illustrate that when the number of people seen on the lake exceed respondents’ expectations, their perceptions of safety and enjoyment both decline, resulting in lower satisfaction. These findings have implications for managing recreational boating use on inland lake systems. Given the role played by expectations in our model, efforts to communicate with boaters about conditions on these waterways is important for helping them plan their boating experience and avoid situations they consider unsafe or unsatisfactory.  相似文献   
48.
The distributions of nanoparticles (below 300 nm in diameter) change rapidly after emission from the tail pipe of a moving vehicle due to the influence of transformation processes. Information on this time scale is important for modelling of nanoparticle dispersion but is unknown because the sampling frequencies of available instruments are unable to capture these rapid processes. In this study, a fast response differential mobility spectrometer (Cambustion Instruments DMS500), originally designed to measure particle number distributions (PNDs) and concentrations in engine exhaust emissions, was deployed to measure particles in the 5–1000 nm size range at a sampling frequency of 10 Hz. This article presents results of two separate studies; one, measurements along the roadside in a Cambridge (UK) street canyon and, two, measurements at a fixed position (20 cm above road level), centrally, in the wake of a single moving diesel-engined car. The aims of the first measurements were to test the suitability and recommend optimum operating conditions of the DMS500 for ambient measurements. The aim of the second study was to investigate the time scale over which competing influences of dilution and transformation processes (nucleation, condensation and coagulation) affect the PNDs in the wake of a moving car. Results suggested that the effect of transformation processes was nearly complete within about 1 s after emission due to rapid dilution in the vehicle wake. Furthermore, roadside measurements in a street canyon showed that the time for traffic emissions to reach the roadside in calm wind conditions was about 45 ± 6 s. These observations suggest the hypothesis that the effects of transformation processes are generally complete by the time particles are observed at roadside and the total particle numbers can then be assumed as conserved. A corollary of this hypothesis is that complex transformation processes can be ignored when modelling the behaviour of nanoparticles in street canyons once the very near-exhaust processes are complete.  相似文献   
49.
Decision rules are the agreed-upon points at which specific management interventions are initiated. For marine mammal management under the U.S. Marine Mammal Protection Act (MMPA), decision rules are usually based on either a numeric population or biological-removal approach. However, for walrus and other ice-associated pinnipeds, the inability to reliably assess population numbers or biological removals highlights a significant gap in the MMPA, particularly when the Arctic environment is rapidly changing. We describe the MMPA's ecosystem-based management goals, and why managers have bypassed these goals in favor of an approach that depends upon numerical population assessment. We then revisit the statute's primary goals in light of current knowledge about the Pacific walrus ecosystem and new developments in environmental governance. We argue that to monitor and respond to changes in the walrus ecosystem, decision rules should be based on scientific criteria that depend less on the currently-impractical goal of accurately enumerating population size and trends, or removals from that population. Rather, managers should base decisions on ecological needs and observed ecological changes. To implement this approach would require an amendment to the MMPA that supports filling the gap in management with achievable decision rules. Alternatively, walrus and other ice-associated pinnipeds will remain largely unmanaged during a period of profound environmental change.  相似文献   
50.
Abstract: A public opinion survey was carried out in Montana to ascertain if the public identifies a level of benthic (bottom‐attached) river and stream algae that is undesirable for recreation. The survey had two parts; an On‐River survey and a By‐Mail survey. The On‐River survey was conducted via 44 trips randomly scheduled throughout the state during which recreators were interviewed in‐person at the stream. Selection of stream segments and survey dates/times was based on known, statewide recreational use patterns. By‐Mail survey forms were sent to 2,000 individuals randomly selected from Montana’s Centralized Voter File (CVF) available from the Montana Secretary of State. The CVF was current through 2004 and represented over 85% of the state’s eligible voting population. In both surveys, eight randomly ordered photographs depicting varying levels of stream benthic algae were presented, and participants were asked if the algae level shown was desirable or undesirable for recreation. Survey form design, selection of photographs, and pretesting followed acceptable protocols that limited unintentional bias through survey execution. There were 433 returned forms (389 complete) for the By‐Mail survey, while the On‐River survey documented 563 interviews. In both surveys, as benthic algal chlorophyll a (Chl a) levels increased, desirability for recreation decreased. (Other measures of benthic algae biomass are presented as well.) For the public majority, mean benthic Chl a levels ≥200 mg/m2 were determined to be undesirable for recreation, whereas mean levels ≤150 mg Chl a/m2 were found to be desirable. Error rates were within the survey’s statistical design criteria (≤5%). The largest potential error source was nonresponse in the By‐Mail survey; however, the population represented by nonrespondents would have to exhibit profoundly different perceptions of river and stream algae to meaningfully alter the results. Results support earlier work in the literature suggesting 150 mg Chl a/m2 represents a benthic algae nuisance threshold.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号