首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2251篇
  免费   20篇
  国内免费   8篇
安全科学   57篇
废物处理   155篇
环保管理   156篇
综合类   260篇
基础理论   483篇
环境理论   1篇
污染及防治   781篇
评价与监测   222篇
社会与环境   161篇
灾害及防治   3篇
  2023年   24篇
  2022年   58篇
  2021年   64篇
  2020年   30篇
  2019年   37篇
  2018年   65篇
  2017年   77篇
  2016年   115篇
  2015年   68篇
  2014年   120篇
  2013年   223篇
  2012年   137篇
  2011年   174篇
  2010年   97篇
  2009年   70篇
  2008年   155篇
  2007年   154篇
  2006年   113篇
  2005年   89篇
  2004年   60篇
  2003年   50篇
  2002年   62篇
  2001年   36篇
  2000年   20篇
  1999年   18篇
  1998年   7篇
  1997年   8篇
  1996年   6篇
  1995年   14篇
  1994年   8篇
  1993年   12篇
  1992年   3篇
  1991年   7篇
  1990年   10篇
  1989年   3篇
  1988年   6篇
  1983年   3篇
  1975年   2篇
  1967年   4篇
  1966年   2篇
  1964年   8篇
  1963年   7篇
  1962年   7篇
  1960年   5篇
  1959年   2篇
  1958年   8篇
  1957年   3篇
  1956年   4篇
  1955年   2篇
  1943年   2篇
排序方式: 共有2279条查询结果,搜索用时 46 毫秒
641.
Important reactive minerals are commonly created during in situ groundwater remediation activities; for example, iron sulfides formed during enhanced reduction approaches can abiotically degrade many chlorinated solvents. However, cost-effective tools to evaluate these treatment processes in field applications are limited and the collection of samples to evaluate in situ mineral formation is costly due to drilling requirements. The new passive Min-Trap sampler is a simple and cost-effective tool that can directly measure the formation of reactive minerals in situ without the need for additional drilling or soil core collection. The methods presented here describe how Min-Traps deployed in conventional monitoring wells can measure reactive minerals and how these minerals can be identified through commercially available analytical methods. Several examples are presented that show how Min-Traps can be used to characterize the rate and spatial variability of reactive mineral precipitation and these data may support operation and optimization decisions.  相似文献   
642.
A model of pesticide transport through the soil profile based on clearance and fugacity paradigms is presented, and an example of its application in a GIS environment is shown. A validation of the model at the field plot scale is presented using data obtained at a crop in a semiarid irrigated agricultural basin which was treated with Lindane. The adequacy at the regional scale is tested by inspection of the model predictions and the measured concentrations of the pesticide obtained from a regional phreatimetric net. The clearance concept is used to obtain estimates of the volumes of some environmental phases. These are further used to solve the equations of thermodynamic equilibrium at equal fugacity and obtain concentration estimates. The model closely reproduces the observed percolation trends, and is consistent with the regional pattern of Lindane distribution in groundwater. An application of the model as unitary module for the simulation of non‐point pesticide sources in a raster GIS frame is shown. Its performance (run time, data needed, etc.) is comparable to that of other existing algorithms, and presents some advantages to planners and evaluators of environmental quality in that it incorporates an explicit 2‐D approach and allows the identification of polluted areas downslope with respect to those directly treated with the pesticides. Further, it can be implemented in a variety of GIS and spatial data processors.  相似文献   
643.
The present study evaluated the effect of culture conditions and phytopathogenic strain co-culture on the production of antimicrobial metabolites and antifungal activity of Penicillium chrysogenum R1, which PCR identified. Antimicrobial activity was determined using the Hunter-Hunter experimental design with three factors (pH, incubation temperature, and inoculum, at two levels each). The antifungal metabolites, β 1-3 glucanase and chitinase, produced in the presence of live and inactivated Fusarium oxysporum Fsox C11 biomass, were evaluated using HPLC-MS and GC-MS. Results showed that P. chrysogenum inhibited the growth of five phytopathogenic fungal strains, and the most significant inhibition was observed for F. oxysporum Fsox C11. The best conditions to achieve the highest antifungal activity of the cell-free extract were pH 7, 28°C, 1 × 106 spores/mL, and 144 h of fermentation, observing 86% inhibition of F. oxysporum Fsox C11 growth. Production of antifungal metabolites such as 1,4-benzoquinone imine, viridicatic acid, phenol-5-methyl-2-(1-methyl ethyl), and hydrolytic enzymes β 1-3 glucanase and chitinase was detected. The results define the perspective in designing new processes and products for biocontrol phytopathogens.  相似文献   
644.
Environmental Science and Pollution Research - Gene-specific changes in DNA methylation by pesticides in occupationally exposed populations have not been studied extensively. Of particular concern...  相似文献   
645.
Environmental Science and Pollution Research - Indoor air pollution is an important risk factor for the generation of lung diseases in developing countries. The indigenous population is...  相似文献   
646.
Pumped-storage hydroelectric power plants are generally perceived as an environmentally respectful technology. Nevertheless, the pumping of water from a lower reservoir to an upper impoundment, and the return of that water during power generation, can strongly affect the water quality of the reservoirs. In particular, plant operation can alter their thermal structure, deep water mixing, and water circulation characteristics. The objective of this study is to quantify, through the use of 3D hydrodynamic modeling, the potential impacts of a pumped-storage hydroelectric plant on the thermal stability and mixing of two reservoirs in Galicia, northwest of Spain. To this end, three-dimensional hydrodynamic simulations were conducted using the model Delft3D. Two different coupled models, one for each reservoir, were constructed and subsequently tested for several stratification scenarios, according to measured temperature profiles during the spring and summer season. Several reservoir minimum and maximum operation water levels were also considered. Model simulations demonstrated a high level of mixing in the vicinity of the intake-outlet structures, in particular during startup of the power plant, regardless of the water level in the reservoir. Beyond this area, the results showed a limited overall effect on stratification and mixing in the upper reservoir, owing to the relation between the inflow temperatures and the initial temperature profile of this reservoir. A more significant alteration of the thermal structure is expected in the lower reservoir due to its narrow shape and shallow depth at the structure location, as well as the temperature differences between receiving waters and inflow.  相似文献   
647.
Closed landfills need after-closure rehabilitation. The chosen option should ensure greenhouse gases release, from the landfill, is not promoted once settled. The objective of this study was to estimate and confront, during different seasons, CH4, CO2 and N2O emissions under three vegetation covers in a closed landfill in Buenos Aires, Argentina. CH4 (methane), CO2 (carbon dioxide) and N2O (nitrous oxide) emissions from landfill’s technosol under spontaneous vegetation (control), Pennisetum purpureum and Miscanthus giganteus (biomass crops), were quantified with non-steady-state non-flow-through chambers, in July 2014 and from February to July 2015. A linear regression analysis was performed to relate the variables “flux of a gas” and “concentration of that gas” from the 3 treatments and 6 dates, separating the 5 sampling times. A high correlation between concentrations and fluxes of CO2 and N2O was found, but no correlation was established for CH4. Mean emissions (2014–2015) varied from: ?2.3 to 639.41 mgCH4 m?2 day?1, 3884 to 46,365 mgCO2 m?2 day?1 and 0.40 to 14.59 mgN2O m?2 day?1. Vegetation covers had no significant effect on CH4 and N2O concentration in time, but they had on CO2 concentration. Season of the year had a significant effect on concentration of the three gases. This is the first study on CH4, CO2 and N2O emissions from a landfill closed 27 years ago covered with biomass crops.  相似文献   
648.
Journal of Material Cycles and Waste Management - A solid enriched with NaA zeolite was synthesized from a coal fly ash, and the so-obtained zeolitized material was used as ion exchanger for...  相似文献   
649.
Metal contamination is a recurring problem in Peru, caused mainly by mine tailings from a past active mining activity. The Ancash region has the largest number of environmental liabilities, which mobilizes high levels of metals and acid drainages into soils and freshwater sources, posing a standing risk on human and environmental health. Native plant species spontaneously growing on naturally acidified soils and acid mine tailings show a unique tolerance to high metal concentrations and are thus potential candidates for soil phytoremediation. However, little is known about their propagation capacity and metal accumulation under controlled conditions. In this study, we aimed at characterizing nine native plant species, previously identified as potential hyperaccumulators, from areas impacted by mine tailings in the Ancash region. Plants were grown on mine soils under greenhouse conditions during 5 months, after which the concentration of Cd, Cu, Ni, Pb, and Zn was analyzed in roots, shoots, and soils. The bioaccumulation (BAF) and translocation factor (TF) were calculated to determine the amount of each metal accumulated in the roots and shoots and to identify which species could be better suited for phytoremediation purposes. Soil samples contained high Cd (6.50–49.80 mg/kg), Cu (159.50–1187.00 mg/kg), Ni (3.50–8.70 mg/kg), Pb (1707.00–4243.00 mg/kg), and Zn (909.00–7100.00 mg/kg) concentrations exceeding national environmental quality standards. After exposure to mine tailings, concentrations of metals in shoots were highest in Werneria nubigena (Cd, 16.68 mg/kg; Cu, 41.36 mg/kg; Ni, 26.85 mg/kg; Zn, 1691.03 mg/kg), Pennisetum clandestinum (Pb, 236.86 mg/kg), and Medicago lupulina (Zn, 1078.10 mg/kg). Metal concentrations in the roots were highest in Juncus bufonius (Cd, 34.34 mg/kg; Cu, 251.07 mg/kg; Ni, 6.60 mg/kg; Pb, 718.44 mg/kg) and M. lupulina (Zn, 2415.73 mg/kg). The greatest BAF was calculated for W. nubigena (Cd, 1.92; Cu, 1.20; Ni, 6.50; Zn, 3.50) and J. bufonius (Ni, 3.02; Zn, 1.30); BCF for Calamagrostis recta (Cd, 1.09; Cu, 1.80; Ni, 1.09), J. bufonius (Cd, 3.91; Cu, 1.79; Ni, 18.36), and Achyrocline alata (Ni, 137; Zn, 1.85); and TF for W. nubigena (Cd, 2.36; Cu, 1.70; Ni, 2.42; Pb, 1.17; Zn, 1.43), A. alata (Cd, 1.14; Pb, 1.94), J. bufonius (Ni, 2.72; Zn, 1.63), and P. clandestinum (Zn, 1.14). Our results suggest that these plant species have a great potential for soil phytoremediation, given their capability to accumulate and transfer metals and their tolerance to highly metal-polluted environments in the Andean region.  相似文献   
650.
In the present study, oil in water emulsions (coil?=?100 ppm; doil droplets?<?2 μm) was purified with ozonation followed by microfiltration using polyethersulfone (PES) membrane (dpore?=?0.2 μm). The effects of pre-ozonation on membrane microfiltration were investigated in detail both in case of ultrapure and model groundwater matrices, applying different durations (0, 5, 10, and 20 min) of pre-ozonation. Simultaneously, the effects of added inorganic water components on the combined method were investigated. Size distribution of oil droplets, zeta potentials, fluxes, and purification efficiencies were measured and fouling mechanisms were described in all cases. It was found that the matrix significantly affected the size distribution and adherence ability of oil droplets onto the membrane surface, therefore fouling mechanisms also were strongly dependent on the matrix. In case of low salt concentration, the total resistance was caused mainly by reversible resistance, which could be significantly reduced (eliminated) by pre-ozonation. In case of model groundwater matrix, nearly twice higher total resistance was measured, and irreversible resistance was dominant, because of the higher adhesion ability of the oil droplets onto the membrane surface. In this case, pre-ozonation resulted in much lower irreversible, but higher reversible resistance. Increased duration of pre-ozonation raised the total resistance and reduced the elimination efficiency (due to fragmented oil droplets and water soluble oxidation by-products) in both cases, therefore short pre-ozonation can be recommended both from economic and performance aspects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号