排序方式: 共有150条查询结果,搜索用时 15 毫秒
21.
Ghavidel Akbar Naji Rad Sumayyah Alikhani Hosein Ali Sharari Meraj Ghanbari Alireza 《Journal of Material Cycles and Waste Management》2018,20(2):1179-1187
Journal of Material Cycles and Waste Management - The bioleaching process comprises two mechanisms: direct action of the bacteria and indirect effect of low pH. In this work, the effect of bacteria... 相似文献
22.
23.
Ali Movafeghi Alireza Khataee Mahboubeh Abedi Roshanak Tarrahi Mohammadreza Dadpour Fatemeh Vafaei 《环境科学学报(英文版)》2018,30(2):130-138
Plants are essential components of all ecosystems and play a critical role in environmental fate of nanoparticles. However, the toxicological impacts of nanoparticles on plants are not well documented. Titanium dioxide nanoparticles (TiO2-NPs) are produced worldwide in large quantities for a wide range of purposes. In the present study, the uptake of TiO2-NPs by the aquatic plant Spirodela polyrrhiza and the consequent effects on the plant were evaluated. Initially, structural and morphological characteristics of the used TiO2-NPs were determined using XRD, SEM, TEM and BET techniques. As a result, an anatase structure with the average crystalline size of 8nm was confirmed for the synthesized TiO2-NPs. Subsequently, entrance of TiO2-NPS to plant roots was verified by fluorescence microscopic images. Activity of a number of antioxidant enzymes, as well as, changes in growth parameters and photosynthetic pigment contents as physiological indices were assessed to investigate the effects of TiO2-NPs on S. polyrrhiza. The increasing concentration of TiO2-NPs led to the significant decrease in all of the growth parameters and changes in antioxidant enzyme activities. The activity of superoxide dismutase enhanced significantly by the increasing concentration of TiO2-NPs. Enhancement of superoxide dismutase activity could be explained as promoting antioxidant system to scavenging the reactive oxygen species. In contrast, the activity of peroxidase was notably decreased in the treated plants. Reduced peroxidase activity could be attributed to either direct effect of these particles on the molecular structure of the enzyme or plant defense system damage due to reactive oxygen species. 相似文献
24.
25.
26.
Peng Liu Xiaoliang Liang Yanliu Dang Junkai He Alireza Shirazi-Amin Laura A. Achol Shanka Dissanayake Hanlin Chen Mingli Fu Daiqi Ye Steven L. Suib 《环境科学学报(英文版)》2021,33(3):293-303
Ceria is widely used as a catalyst for soot combustion, but effects of Zr substitution on the reaction mechanism is ambiguous. The present work elucidates effects of Zr substitution on soot combustion over cubic fluorite-structured nanoceria. The nanostructured CeO2, Ce0.92Zr0.08O2, and Ce0.84Zr0.16O2 composed of 5–6 nm crystallites display Tm-CO2 (the temperature at maximum CO2 yield) at 383, 355, and 375°C under 10 vol.% O2/N2, respectively. The size of agglomerate decreases from 165.5 to 51.9–57.3 nm, which is beneficial for the soot-ceria contact. Moreover, Zr increases the amount of surface oxygen vacancies, generating more active oxygen (O2? and O?) for soot oxidation. Thus, the activities of Ce0.92Zr0.08O2 and Ce0.84Zr0.16O2 in soot combustion are better than that of CeO2. Although oxygen vacancies promote the migration of lattice O2?, the enriched surface Zr also inhibits the mobility of lattice O2?. Therefore, the Tm-CO2 of Ce0.84Zr0.16O2 is higher than that of Ce0.92Zr0.08O2. Based on reaction kinetic study, soot in direct contact with ceria preferentially decomposes with low activation energy, while the oxidation of isolated soot occurs through diffusion with high activation energy. The obtained findings provide new understanding on the soot combustion over nanoceria. 相似文献
27.
Alireza A. Shamshirsaz Kelsey A. Stewart Hadi Erfani Ahmed A. Nassr Nathan C. Sundgren Amy R. Mehollin-Ray Shaine A. Morris Jimmy Espinoza Magdalena Sanz Cortes Christopher Cassady Timothy C. Lee Eumenia C. Castro Olutoyin A. Olutoye Deepak K. Mehta Darrell Cass Oluyinka O. Olutoye Michael A. Belfort 《黑龙江环境通报》2019,39(4):287-292
28.
29.
Alireza Bahadori Hari B. Vuthaluru 《International Journal of Greenhouse Gas Control》2010,4(3):532-536
In the present work, simple-to-use predictive tool, which is simpler than current available models and involves a fewer number of parameters, requiring less complicated and shorter computations, is formulated to arrive at an appropriate estimation of the transport properties (namely viscosity and thermal conductivity) of carbon dioxide (CO2) as a function of pressure and temperature. The correlation developed accurately works for temperatures between 260 and 450 K as well as pressures between 10 and 70 MPa which is the range of pressure that is widely considered in CO2 sequestration. Results have been compared with the reported data and excellent agreement has been obtained between the predicted results and observed values. The average absolute deviations were found to be 1.1 and 1.3% for viscosity and thermal conductivity of carbon dioxide respectively. Proposed simple predictive tool and can be of immense practical value for the engineers to have a quick check on the transport properties (namely viscosity and thermal conductivity) of carbon dioxide at various temperatures and pressures without performing any experimental measurements. In particular, personnel dealing with regulatory bodies of greenhouse gas control and process industries would find the proposed approach to be user friendly involving transparent calculations with no complex expressions. 相似文献
30.
Three-dimensional analysis of coherent turbulent flow structure around a single circular bridge pier
The coherent turbulent flow around a single circular bridge pier and its effects on the bed scouring pattern is investigated in this study. The coherent turbulent flow and associated shear stresses play a major role in sediment entrainment from the bed particularly around a bridge pier where complex vortex structures exist. The conventional two-dimensional quadrant analysis of the bursting process is unable to define sediment entrainment, particularly where fully three-dimensional flow structures exist. In this paper, three-dimensional octant analysis was used to improve understanding of the role of bursting events in the process of particle entrainment. In this study, the three-dimensional velocity of flow was measured at 102 points near the bed of an open channel using an Acoustic Doppler Velocity meter (Micro-ADV). The pattern of bed scouring was measured during the experiment. The velocity data were analysed using the Markov process to investigate the sequential occurrence of bursting events and to determine the transition probability of the bursting events. The results showed that external sweep and internal ejection events were an effective mechanism for sediment entrainment around a single circular bridge pier. The results are useful in understanding scour patterns around bridge piers. 相似文献