首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   144篇
  免费   1篇
  国内免费   5篇
安全科学   18篇
废物处理   15篇
环保管理   6篇
综合类   35篇
基础理论   14篇
污染及防治   31篇
评价与监测   16篇
社会与环境   14篇
灾害及防治   1篇
  2023年   8篇
  2022年   16篇
  2021年   20篇
  2020年   6篇
  2019年   10篇
  2018年   4篇
  2017年   9篇
  2016年   9篇
  2015年   5篇
  2014年   9篇
  2013年   20篇
  2012年   10篇
  2011年   5篇
  2010年   9篇
  2009年   5篇
  2006年   2篇
  2004年   2篇
  2000年   1篇
排序方式: 共有150条查询结果,搜索用时 15 毫秒
91.
In this paper, degradation of a mixture of three azo dyes was studied by the photo-assisted electrochemical process using an O2-diffusion cathode containing carbon nanotubes and boron-doped diamond (BDD) anode. The concentration of three textile dyes (C.I. Acid Orange 8 (AO8), C.I. Acid Orange 10 (AO10), and C.I. Acid Orange 12 (AO12)) was determined simultaneously despite the severe overlap of their spectra. For this purpose, partial least square (PLS), as a multivariate calibration method, was utilized based on recording UV–Vis spectra during the decolorization process. Moreover, the central composite design was used for the modeling of photo-assisted electrochemical decolorization of the aqueous solutions containing three dyes. The investigated parameters were the initial concentration of three dyes, applied current and reaction time. Analysis of variance (ANOVA) revealed that the obtained regression models match the experimental results well with R (Khataee et al. 2010, Clean-Soil Air Water 38 (1):96–103, 2010) of 0.972, 0.971, and 0.957 for AO8, AO10, and AO12, respectively. Three-dimensional surface and contour plots were applied to describe the relation between experimental conditions and the observed response. The results of TOC analysis confirmed good ability of proposed photo-assisted electrochemical process for degradation and mineralization of textile industry wastewater.  相似文献   
92.
ABSTRACT

The Aerosol Research and Inhalation Epidemiology Study (ARIES) was designed to provide high-quality measurements of PM25, its components, and co-varying pollutants for an air pollution epidemiology study in Atlanta, GA.

Air pollution epidemiology studies have typically relied on available data on particle mass often collected using filter-based methods. Filter-based PM2.5 sampling is susceptible to both positive and negative errors in the measurement of aerosol mass and particle-phase component concentrations in the undisturbed atmosphere. These biases are introduced by collection of gas-phase aerosol components on the filter media or by volatilization of particle phase components from collected particles. As part of the ARIES, we collected daily 24-hr PM2.5 mass and speciation samples and continuous PM2.5 data at a mixed residential-light industrial site in Atlanta. These data facilitate analysis of the effects of a wide variety of factors on sampler performance. We assess the relative importance of PM2.5 components and consider associations and potential mechanistic linkages of PM2.5 mass concentrations with several PM2.5 components.

For the 12 months of validated data collected to date (August 1, 1998-July 31, 1999), the monthly average Federal Reference Method (FRM) PM2 5 mass always exceeded the proposed annual average standard (12-month average = 20.3 ± 9.5 ug/m3). The particulate SO4 2- fraction (as (NH4)2SO4) was largest in the summer and exceeded 50% of the FRM mass. The contribution of (NH4)2SO4 to FRM PM2.5 mass dropped to less than 30% in winter. Particu-late NO3 - collected on a denuded nylon filter averaged 1.1 ± 0.9 ug/m3. Particle-phase organic compounds (as organic carbon × 1.4) measured on a denuded quartz filter sampler averaged 6.4 ± 3.1 ug/m3 (32% of FRM PM2 5 mass) with less seasonal variability than SO4 2-.  相似文献   
93.
94.
Among the methods that are being developed to date for CO2 capture and separation, carbon dioxide adsorption is of great interest due to its low energy consumption, low equipment cost and easiness for application. In this work, a simple method which is easier than existing approaches requiring more complicated and longer computations is presented to accurately predict the carbon dioxide adsorption isotherms for a microporous material as a function of temperature and partial pressure of carbon dioxide. The method appears promising and can be extended for CO2 capture as well as for separation of wide range of adsorbents and microporous materials including several molecular sieves merely by the quick readjustment of tuned coefficients. The proposed method showed consistently accurate results across the proposed pressure and temperature ranges. Predictions showed an average absolute deviation of 1.4% compared to existing Sips and Langmuir equations which show an average absolute deviations of 2.3% and 4%, respectively. The proposed method is superior owing to its accuracy and clear numerical background, wherein the relevant coefficients can be retuned quickly for various cases. This simple-to-use approach can be of immense practical value for the engineers and scientists to have a quick check on adsorption capacities of a given adsorbent at various temperatures and pressures without the necessity of any experimental measurements. In particular, personnel dealing with regulatory bodies of greenhouse gas control and process industries would find the proposed approach to be user friendly involving transparent calculations with no complex expressions.  相似文献   
95.
This study investigates the feasibility of using recycled high density polyethylene (rHDPE), polypropylene (rPP) and old newspaper (rONP) fiber to manufacture experimental composite panels. The panels were made through air-forming and hot press. The effects of the fiber and coupling agent concentration on tensile, flexural, internal bond properties and water absorption and thickness swelling of wood–fiber plastic composites were studied. The use of maleated polypropylene as coupling agent improved the compatibility between the fiber and both plastic matrices and mechanical properties of the resultant composites compared well with those of non-coupled ones. Based on the findings in this work, it appears that recycled materials can be used to manufacture value-added panels without having any significant adverse influence on board properties. It was also found that composites with rHDPE provided moderately superior properties, compared with rPP samples.  相似文献   
96.
A principal component analysis (PCA) based methodology accounting for EHS hazard and sustainability metrics has been recently proposed in literature (Srinivasan and Nhan, 2008) to deal with the subjective weighting problem of existing index-based methods. In this study we evaluate the potential use of the PCA-based method during early phases of process design in the problem of selection between various synthesis paths, also called chemical routes, for the production of chemical compounds. The study also focuses on the impact of the methodology settings on the obtained chemical route rankings and their interpretation. Two case studies have been performed regarding the production of 4-(2-methoxyethyl)-phenol (MEP) and methyl methacrylate (MMA) using fifteen different evaluation categories capturing various sustainability metrics. The PCA-based method identified the most promising chemical routes as well as the most important evaluation categories. The necessity for normalization of the raw data was demonstrated, without the method being very sensitive to the type of normalization. Moreover, the effect of the transition approach from chemical step to chemical route scores is discussed. The results of the PCA-based method are also compared with an index-based method (Koller et al., 2000) sharing the same evaluation categories, as well as with other index-based frameworks in order to reveal the extent of similarities.  相似文献   
97.
The aim of this study was to assess the pollution status of metals in sediments of Hara Biosphere Reserve using pollution indicators. For this purpose, sediment samples from nine locations were collected and characterized for metal content (Pb, Cr, Zn, Cu, and Fe) using the total digestion technique. Comparison of metal concentrations with that of sediment quality guidelines (SQGs) demonstrated no association with negative biological effects for Cu and Zn, while the values of Pb and Cr mainly illustrated to have association with negative biological effects. The results of the geo-accumulation index (I geo) indicated no contamination for Cr, Cu, Zn, and Fe, while the values of Pb demonstrated to have moderate contamination based on I geo values. The analysis of the enrichment factor (EF) showed no enrichment for Cu and Zn and minor enrichment for Pb and Cr. Similar results were also found for quantification of contamination (QoC) analysis, where the values of Cu and Zn demonstrated to have a geogenic source of contamination, while the values of Pb and Cr mainly illustrated to have an anthropogenic source of contamination. According to EF and QoC calculations, the values of Cu and Zn were derived mainly from natural processes and exposure of material from the earth’s crust, while the values for Pb and Cr were enriched by anthropogenic activities. The results of the contamination factor (C f i ) demonstrated low contamination levels for Fe, Cr, Zn, and Cu and moderate contamination levels for Pb. The pollution load index (PLI), showing the overall contamination of metals, demonstrated moderate pollution status in the study area.  相似文献   
98.
Environmental Science and Pollution Research - A ternary CdS/AgBr/Ag3PO4 coupled system was prepared, characterized by different techniques, and used for the photodegradation of methylene blue...  相似文献   
99.
Environmental Science and Pollution Research - Every year, almost eight million people die from tobacco-related diseases, among which around 1.2 million die from secondhand smoke (SHS) exposure....  相似文献   
100.
Adaptation is a key factor for reducing the future vulnerability of climate change impacts on crop production. The objectives of this study were to simulate the climate change effects on growth and grain yield of maize (Zea mays L.) and to evaluate the possibilities of employing various cultivar of maize in three classes (long, medium and short maturity) as an adaptation option for mitigating the climate change impacts on maize production in Khorasan Razavi province of Iran. For this purpose, we employed two types of General Circulation Models (GCMs) and three scenarios (A1B, A2 and B1). Daily climatic parameters as one stochastic growing season for each projection period were generated by Long Ashton Research Station-Weather Generator (LARS?WG). Also, crop growth under projected climate conditions was simulated based on the Cropping System Model (CSM)-CERES-Maize. LARS-WG had appropriate prediction for climatic parameters. The predicted results showed that the day to anthesis (DTA) and anthesis period (AP) of various cultivars of maize were shortened in response to climate change impacts in all scenarios and GCMs models; ranging between 0.5 % to 17.5 % for DTA and 5 % to 33 % for AP. The simulated grain yields of different cultivars was gradually decreased across all the scenarios by 6.4 % to 42.15 % during the future 100 years compared to the present climate conditions. The short and medium season cultivars were faced with the lowest and highest reduction of the traits, respectively. It means that for the short maturing cultivars, the impacts of high temperature stress could be much less compared with medium and long maturity cultivars. Based on our findings, it can be concluded that cultivation of early maturing cultivars of maize can be considered as the effective approach to mitigate the adverse effects of climate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号