首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   177篇
  免费   7篇
  国内免费   9篇
安全科学   7篇
废物处理   10篇
环保管理   35篇
综合类   19篇
基础理论   26篇
污染及防治   59篇
评价与监测   23篇
社会与环境   12篇
灾害及防治   2篇
  2023年   12篇
  2022年   12篇
  2021年   13篇
  2020年   1篇
  2019年   1篇
  2018年   8篇
  2017年   11篇
  2016年   7篇
  2015年   3篇
  2014年   9篇
  2013年   14篇
  2012年   9篇
  2011年   14篇
  2010年   15篇
  2009年   7篇
  2008年   10篇
  2007年   10篇
  2006年   6篇
  2005年   8篇
  2004年   3篇
  2002年   3篇
  1997年   1篇
  1994年   1篇
  1992年   1篇
  1989年   1篇
  1985年   2篇
  1983年   2篇
  1982年   3篇
  1981年   2篇
  1969年   1篇
  1966年   1篇
  1964年   1篇
  1961年   1篇
排序方式: 共有193条查询结果,搜索用时 15 毫秒
101.
Environmental Science and Pollution Research - The major global concern on energy is focused on conventional fossil resources. The burning of fossil fuels is an origin of greenhouse gas emissions...  相似文献   
102.
ABSTRACT

Objective: This study analyzed the influence of reference sensor inputs from anthropomorphic test devices (ATDs) versus postmortem human subjects (PMHSs) on simulations of frontal blunt impacts to the advanced combat helmet (ACH).

Methods: A rigid-arm pendulum was used to generate frontal impacts to ACHs mounted on ATDs and PMHS. An appropriately sized ACH was selected according to standard fitting guidelines. The National Operating Committee on Standards for Athletic Equipment (NOCSAE) head was selected for ATD tests due to shape features that enabled a realistic helmet fit. A custom procedure was used to mount a reference sensor internally near the center of gravity (CG) of the PMHS. Reference sensor data from the head CG were used as inputs for the Simulated Injury Monitor (SIMon). Brain responses were assessed with the cumulative strain damage measure set at 10%, or CSDM(10).

Results: Compared to ATD tests, PMHS tests produced 18.7% higher peak linear accelerations and 5.2% higher peak angular velocities. Average times to peak for linear accelerations were relatively similar between ATDs (5.5?ms) and PMHSs (5.8?ms). However, times to peak for angular velocities were higher by a factor of up to 3.4 for PMHSs compared to ATDs. Values for were also higher by a factor of up to 13.1 when PMHS inputs were used for SIMon.

Conclusions: The preliminary findings of this work indicate that small differences in ATD versus PMHS head kinematics could lead to large differences in strain-derived brain injury metrics such as CSDM.  相似文献   
103.
Land use change can significantly affect the provision of ecosystem services and the effects could be exacerbated by projected climate change. We quantify ecosystem services of bioenergy‐based land use change and estimate the potential changes of ecosystem services due to climate change projections. We considered 17 bioenergy‐based scenarios with Miscanthus, switchgrass, and corn stover as candidate bioenergy feedstock. Soil and Water Assessment Tool simulations of biomass/grain yield, hydrology, and water quality were used to quantify ecosystem services freshwater provision (FWPI), food (FPI) and fuel provision, erosion regulation (ERI), and flood regulation (FRI). Nine climate projections from Coupled Model Intercomparison Project phase‐3 were used to quantify the potential climate change variability. Overall, ecosystem services of heavily row cropped Wildcat Creek watershed were lower than St. Joseph River watershed which had more forested and perennial pasture lands. The provision of ecosystem services for both study watersheds were improved with bioenergy production scenarios. Miscanthus in marginal lands of Wildcat Creek (9% of total area) increased FWPI by 27% and ERI by 14% and decreased FPI by 12% from the baseline. For St. Joseph watershed, Miscanthus in marginal lands (18% of total area) improved FWPI by 87% and ERI by 23% while decreasing FPI by 46%. The relative impacts of land use change were considerably larger than climate change impacts in this paper. Editor's note : This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.  相似文献   
104.
The objective of the present study was to evince the long-term changes after natural revegetation and experimental revegetation of the coal mine spoils with respect to total plant biomass, available plant nutrients, nitrogen transformation and microbial biomass N (MBN) in dry tropical environment of India. Total plant biomass (above- and below-ground), plant available nitrogen, soil nitrogen mineralization and microbial biomass N (MBN) were studied for 2 years in 5 and 10 years old naturally vegetated and revegetated coal mine spoils, and dry tropical forest ecosystem of India. In forest ecosystem, the above ground biomass values ranged from 3,520 to 3,630 kg ha(-1) and belowground from 6,280 to 6,560 kg ha(-1). Plant available nitrogen ranged from 16.76 to 23.21 microg g(-1), net N-mineralization from 9.8 to 48.53 microg g(-1) month(-1) and MBN from 26.4 to 80.02 microg g(-1). In naturally revegetated mine spoil, the above ground biomass values ranged from 1,036 to 1,380 kg ha(-1) and belowground from 2,538 to 3,380 kg ha(-1). Plant available nitrogen ranged from 7.33-17.14 microg g(-1), net N-mineralization from 3.1 to 12.46 microg g(-1) month(-1) and MBN from 14.2 to 35.44 microg g(-1). In revegetated mine spoil, the above ground biomass values ranged from 1,224 to 1,678 kg ha(-1) and belowground from 2,870 to 4,130 kg ha(-1). Plant available nitrogen ranged from 9.4 to 18.83 microg g(-1), net N-mineralization from 4.2 to 16.2 microg g(-1) month(-1) and MBN from 21.6 to 42.6 microg g(-1). The mean plant biomass values in 5 and 10 years mine spoils was lower compared to forest ecosystem by 2.5 and 2 times, respectively. N-mineralization value in 5 year mine spoil was 3.5 times lower and in 10 years mine spoil 2 times lower compared to forest ecosystem. The MBN value was about 2 times lower in both 5 and 10 year mine spoils compared to native forest. MBN was positively related to the re-vegetation age of the mine spoil.  相似文献   
105.
Airborne particulates (PM10) from four different areas within Agra city (a semi-arid region) were collected using respirable dust samplers during the winter season (Nov. 2005–Feb 2006) and were then extracted with methylene chloride using an automated Soxhlet Extraction System (Soxtherm®). The extracts were analyzed for 17 target polycyclic aromatic hydrocarbons (PAHs) and the heterocycle carbazole. The average concentration of total PAH (TPAH) ranged from 8.04 to 97.93 ng m???3. The industrial site had the highest TPAH concentration followed by the residential, roadside, and agricultural sites. Indeno(1,2,3-cd)pyrene, benzo(g,h,i)perylene, and benzo(b)fluoranthene were the predominant compounds found in the samples collected from all of the sites. The average B(a)P-equivalent exposure, calculated by using toxic equivalent factors derived from literature and the USEPA, was approximately 7.6 ng m???3. Source identification using factor analysis identified prominent three, four, four, and four probable factors at industrial, residential, roadside, and agricultural sites, respectively.  相似文献   
106.
Polyaromatic hydrocarbons (PAHs) utilizing bacteria were isolated from soils of seven sites of Mathura refinery, India. Twenty-six bacterial strains with different morphotypes were isolated. These strains were acclimatized to utilize a mixture of four polycyclic aromatic hydrocarbons, i.e., anthracene, fluorene, phenanthrene, and pyrene, each at 50 mg/L concentration as sole carbon source. Out of total isolates, 15 potent isolates were subjected to 16S rDNA sequencing and identified as a member of diverse genera, i.e., Bacillus, Acinetobacter, Stenotrophomonas, Alcaligenes, Lysinibacillus, Brevibacterium, Serratia, and Streptomyces. Consortium of four promising isolates (Acinetobacter, Brevibacterium, Serratia, and Streptomyces) were also investigated for bioremediation of PAH mixture. This consortium was proved to be efficient PAH degrader resulting in 40–70 % degradation of PAH within 7 days. Results of this study indicated that these genera may play an active role in bioremediation of PAHs.  相似文献   
107.
Bottom ash and de-oiled soya have been evaluated as potential adsorbents for the removal of a water soluble azo dye. The characterization of the adsorbents has been performed using infrared spectroscopy and differential thermal analysis. A batch of adsorption method has been adopted for studying the effects of pH, adsorbate concentration, and particle size on the adsorption process. The experimental data were tested using Langmuir, Freundlich, Tempkin, and Dubinin–Radushkevich isotherms and their parameter constants were determined. The thermodynamics showed that the process is spontaneous and exothermic. The kinetic studies revealed that the adsorption process follows first-order kinetics. A fixed-bed adsorption experiment resulted in 89% and 94% saturation of bottom ash and de-oiled soya, respectively, indicating that both adsorbents can be potentially economical.  相似文献   
108.
Expansion of irrigated agriculture in the Aral Sea Basin in the second half of the twentieth century led to the conversion of vast tracks of virgin land into productive agricultural systems resulting in significant increases in employment opportunities and income generation. The positive effects of the development of irrigated agriculture were replete with serious environmental implications. Excessive use of irrigation water coupled with inadequate drainage systems has caused large‐scale land degradation and water quality deterioration in downstream parts of the basin, which is fed by two main rivers, the Amu‐Darya and Syr‐Darya. Recent estimates suggest that more than 50% of irrigated soils are salt‐affected and/or waterlogged in Central Asia. Considering the availability of natural and human resources in the Aral Sea Basin as well as the recent research addressing soil and water management, there is cause for cautious optimism. Research‐based interventions that have shown significant promise in addressing this impasse include: (1) rehabilitation of abandoned salt‐affected lands through halophytic plant species; (2) introduction of 35‐day‐old early maturing rice varieties to withstand ambient soil and irrigation water salinity; (3) productivity enhancement of high‐magnesium soils and water resources through calcium‐based soil amendments; (4) use of certain tree species as biological pumps to lower elevated groundwater levels in waterlogged areas; (5) optimal use of fertilizers, particularly those supplying nitrogen, to mitigate the adverse effects of soil and irrigation water salinity; (6) mulching of furrows under saline conditions to reduce evaporation and salinity buildup in the root zone; and (7) establishment of multipurpose tree and shrub species for biomass and renewable energy production. Because of water withdrawals for agriculture from two main transboundary rivers in the Aral Sea Basin, there would be a need for policy level interventions conducive for enhancing interstate cooperation to transform salt‐affected soil and saline water resources from an environmental and productivity constraint into an economic asset.  相似文献   
109.
Concentration of 2,4-dichlorophenoxyacetic acid (2,4-D) may affect its degradation kinetics in advanced oxidation systems, and combinations of two or more systems can be more effective for its mineralization at low concentration levels. Degradations and mineralizations of 0.045mM 2,4-D using O(3), O(3)/UV, UV/TiO(2) and O(3)/UV/TiO(2) systems were compared, and influence of reaction temperature on the mineralization in O(3)/UV/TiO(2) system was investigated. 2,4-D degradations by O(3), O(3)/UV and UV/TiO(2) systems were similar to the results of earlier investigations with higher 2,4-D concentrations. The degradations and total organic carbon (TOC) removals in the four systems were well described by the first-order reaction kinetics. The degradation and removal were greatly enhanced in O(3)/UV/TiO(2) system, and further enhancements were observed with larger O(3) supplies. The enhancements were attributed to hydroxyl radical (()OH) generation from more than one reaction pathway. The degradation and removal in O(3)/UV/TiO(2) system were very efficient with reaction temperature fixed at 20 degrees C. It was suspected that reaction temperature might have influenced ()OH generation in the system, which needs further attention.  相似文献   
110.
A study was performed selecting one protected forest and an adjacent degraded forest ecosystem to quantify the impact of forest degradation on soil inorganic nitrogen, fine root production, nitrification, N-mineralization and microbial biomass N. There were marked seasonal variations of all the parameters in the upper 0–10 and lower 10–20 cm depths. The seasonal trend of net nitrification and net N-mineralization was reverse of that for inorganic nitrogen and microbial biomass N. Net nitrification, net N-mineralization and fine root biomass values were highest in both forests during rainy season. On contrary, inorganic nitrogen and microbial biomass N were highest during summer season. There was a marked impact of forest degradation on inorganic nitrogen, fine root production nitrification, N-mineralization and microbial biomass observed. Soil properties also varied with soil depth. Fine root biomass, nitrification, N-mineralization and microbial biomass N decreased significantly in higher soil depth. Degradation causes decline in mean seasonal fine root biomass in upper layer and in lower depth by 37% and 27%, respectively. The mean seasonal net nitrification and N-mineralization in upper depth decreased by 42% and 37%, respectively and in lower depth by 42.21% and 39% respectively. Similarly microbial biomass N also decreased by 31.16% in upper layer 33.19% in lower layer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号