首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   197篇
  免费   2篇
安全科学   3篇
废物处理   14篇
环保管理   18篇
综合类   31篇
基础理论   33篇
污染及防治   74篇
评价与监测   22篇
社会与环境   4篇
  2023年   5篇
  2022年   8篇
  2021年   19篇
  2020年   8篇
  2019年   6篇
  2018年   11篇
  2017年   6篇
  2016年   15篇
  2015年   6篇
  2014年   16篇
  2013年   21篇
  2012年   8篇
  2011年   10篇
  2010年   7篇
  2009年   6篇
  2008年   10篇
  2007年   7篇
  2006年   4篇
  2005年   5篇
  2004年   5篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1993年   1篇
  1983年   1篇
  1966年   1篇
  1964年   1篇
  1963年   3篇
  1959年   1篇
  1957年   1篇
排序方式: 共有199条查询结果,搜索用时 542 毫秒
71.
ABSTRACT

Emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) from municipal waste incineration have been widely studied because of their extensive toxicity, and many efforts have been made to restrict their emissions. Although a number of chemical compounds have been shown in laboratory-scale tests to inhibit the formation of PCDD/Fs, few have been tested in pilot- or full-scale plants. This work evaluates the effect of urea as a PCDD/F inhibitor in a pilot-scale incinerator that uses refuse-derived fuel (RDF). The decomposition of urea under the test conditions was also studied using detailed kinetic modeling. An aqueous solution of urea was injected into the flue gas stream after the furnace at ~730 °C, with varied urea concentrations and flue gas residence times used between the furnace and the sampling point. The results demonstrate that urea can successfully inhibit PCDD/F formation in waste incineration if concentrations and injection points are properly adjusted. The kinetic model showed that urea can be rapidly decomposed under appropriate flue gas conditions, indicating that in addition to the urea molecule itself, decomposition products of urea can also be responsible for the reduction of PCDD/F production during incineration.  相似文献   
72.
Abstract

Due to the toxicity and high environmental persistence of organochlorine pesticides in aquatic organisms, turtles have been studied as environment biomonitors. These animals are important sources of protein for the riverside and indigenous peoples of the Brazilian amazon. In the present study, organochlorine pesticide contamination was investigated in Podocnemis unifilis. Liver, muscle and fatty tissue samples were removed from 50 specimens collected from five sampling points located in the Xingu River basin. Fourteen organochlorine pesticides were analysed via gas chromatography with an electron capture detector (CG-ECD). Eight organochlorine pesticides were detected with average concentrations of ∑DDT, ∑Endossulfan and ∑HCH which were 26.17?±?26.35, 14.38?±?23.77 and 1.39?±?8.46?ng g?1 in moisture content, respectively. DDT compounds were the most predominant, with a greater concentration of pp′-DDT in the liver and pp′-DDD in the muscle. Significant differences were noted between the types of tissues studied, and the concentration of OCPs varied between sampling sites.  相似文献   
73.
In this study, photocatalytic (photo-Fenton and H2O2/UV) and dark Fenton processes were used to remove ethylenethiourea (ETU) from water. The experiments were conducted in a photo-reactor with an 80 W mercury vapor lamp. The mineralization of ETU was determined by total organic carbon analysis, and ETU degradation was qualitatively monitored by the reduction of UV absorbance at 232 nm. A higher mineralization efficiency was obtained by using the photo-peroxidation process (UV/H2O2). Approximately 77% of ETU was mineralized within 120 min of the reaction using [H2O2]0 = 400 mg L?1. The photo-Fenton process mineralized 70% of the ETU with [H2O2]0 = 800 mg L?1 and [Fe2+] = 400 mg L?1, and there is evidence that hydrogen peroxide was the limiting reagent in the reaction because it was rapidly consumed. Moreover, increasing the concentration of H2O2 from 800 mg L?1 to 1200 mg L?1 did not enhance the degradation of ETU. Kinetics studies revealed that the pseudo-second-order model best fit the experimental conditions. The k values for the UV/H2O2 and photo-Fenton processes were determined to be 6.2 × 10?4 mg L?1 min?1 and 7.7 × 10?4 mg L?1 min?1, respectively. The mineralization of ETU in the absence of hydrogen peroxide has led to the conclusion that ETU transformation products are susceptible to photolysis by UV light. These are promising results for further research. The processes that were investigated can be used to remove pesticide metabolites from drinking water sources and wastewater in developing countries.  相似文献   
74.
Extraction and depolymerisation of chitin and chitosan from shrimp waste material was carried out using fish proteases aided process. A high deproteinization level (80 %) was recorded with an Enzyme/Substrate ratio of 10 U/mg. The demineralization of shrimp waste was completely achieved within 6 h at room temperature in HCl 1.25 M, and the residual content of calcium in chitin was below 0.01 %. The degree of N-acetylation, calculated from the 13C CP/MAS-NMR spectrum, was 85 %. The chitin obtained was converted to chitosan by N-deacetylation. X-ray diffraction patterns also indicated two characteristics crystalline peaks approximately at 10° and 20° (2θ). Chitosan was then evaluated in the treatment of unhairing effluents from the tanning industry. A result showed that chitosan as a coagulant has good performance in alkaline pH and at concentration of 0.5 g/L. Within these conditions, chitosan could decrease turbidity value, total suspended solids (89 % at 1.5 g/L), biological oxygen demand (33.3 % at 1.5 g/L) and chemical oxygen demand (58.7 % at 1.5 g/L).  相似文献   
75.
Exposure to specific metallic compounds can cause severe deleterious modifications in organisms. Fishes are particularly prone to toxic effects from exposure to metallic compounds via their environment. Species that inhabit estuaries or freshwater environments can be chronically affected by persistent exposure to a large number of metallic compounds, particularly those released by industrial activities. In this study, we exposed yellow eels (European eel, Anguilla anguilla) for 28 days to environmentally relevant concentrations of four specific metals; lead (300, 600, and 1,200 μg/l), copper (40, 120, and 360 μg/l), zinc (30, 60, and 120 μg/l) and cadmium (50, 150, and 450 μg/l). The selected endpoints to assess the toxicological effects were neurotransmission (cholinesterasic activity in nervous tissue), antioxidant defense, and phase II metabolism (glutathione-S-transferase [GST] activity, in both gills and liver tissues), and peroxidative damage. The results showed an overall lack of effects on acetylcholinesterase for all tested metals. Lead, copper, and cadmium exposure caused a significant, dose-dependent, increase in GST activity in gill tissue. However, liver GST only significantly increased following zinc exposure. No statistically significant effects were observed for the thiobarbituric acid reactive substances assay, indicating the absence of peroxidative damage. These findings suggest that, despite the occurrence of an oxidative-based response after exposure to lead, copper, and cadmium, this had no consequence in terms of peroxidative membrane damage; furthermore, cholinergic neurotoxicity caused by lead, copper, and cadmium did not occur. The implications of these results are further discussed.  相似文献   
76.
This study reports a combined method using solid phase extraction (SPE), followed by solid phase microextraction (SPME) to concentrate different pesticides, including chlorinated, organophosphorus, triazines, pyretroids and chloroacetamides, present at trace levels in water samples. Identification and quantification was carried out by gas chromatography coupled to Mass Spectrometry (GC–MS). The optimized methodology showed LOQs at ng L?1 levels (ranging 0.2–3.5 ng L?1) in addition to acceptable precision and robustness (recoveries ranged 63–104%, RSD from 4% to 23%), presenting a novel method to reach trace levels, similar to that obtainable using EC detector, with structural confirmation by MS during the analysis of a wide range of environmental pollutants.This method was applied to the study of temporal and spatial distribution of pesticides in the Suquía River basin (Córdoba-Argentina). As expected, highest levels of agrochemicals were observed in areas with intensive agricultural practices, being atrazine (max. = 433.9 ng L?1), alpha-cypermetrine (max. = 121.7 ng L?1) and endosulfan sulfate (max. = 106.7 ng L?1) predominant. In urban areas, the prevalent pesticide was alpha-cypermethrine. These results draw attention to the need of pesticide monitoring programs in rivers, considering both urban and rural sections.  相似文献   
77.
In general, tropical rivers have a great impact on human activities. Bioaccumulation of toxins is a worldwide problem nowadays and has been, historically, overlooked by the supervisory authorities. This study evaluated cytogenotoxic effects of Guaribas river (a Brazilian river) water during dry and rainy seasons of 2014 by using the Allium cepa test system. The toxicogenetic variables, including root growth, mitotic index, and chromosomal aberrations, were analyzed in meristematic cells of A. cepa exposed to water samples taken from the up-, within, and downstream of the city Picos (state: Piauí). The physical-chemical parameters were also analyzed to explain water quality and possible anthropogenic action. Additionally, the presence of heavy metals was also analyzed to explain water quality and possible damaging effects on eukaryotic cells. The results suggest that the river water exerted cytotoxic, mutagenic, and genotoxic effects, regardless of the seasons. In addition, Guaribas river presented physico-chemical values outside the Brazilian laws, which can be a characteristic of human pollution (domestic sewage, industrial, and local agriculture). The genetic damage was positively correlated with higher levels of heavy metals. The pollution of the Guaribas river water may link to the chemical contamination, including the action of heavy metals and their impacts on genetic instability in the aquatic ecosystem. In conclusion, necessary steps should be taken into account for further toxicogenetic studies of the Guaribas river water, as it has an influence in human health of the same region of Brazil.  相似文献   
78.
79.
The growing use of pharmaceutical drug is mainly due to several diseases in human and in animal husbandry. As these drugs are discharged into waterways via wastewater, they cause a major impact on the environment. Many of these drugs are hormones; in which even at low concentrations can alter metabolic and physiological functions in many organisms. Hormones were found in surface water, groundwater, soil, and sediment at concentrations from nanograms to milligrams per liter of volume—quantities known to cause changes in the endocrine system of aquatic organisms. This study aimed to develop a methodology for hormone detection (estriol, estrone, 17β-estradiol, 17α-ethinylestradiol, progesterone, and testosterone) on surface and treated water samples. Sample toxicity was assessed by ecotoxicology tests using Daphnia magna. A liquid chromatograph coupled to a mass spectrometer with an electrospray ionization source (LC-ESI-MS/MS) was used for the analysis. The results showed that samples were contaminated by the hormones estriol, estrone, progesterone, 17β-estradiol, and 17α-ethinylestradiol during the sampling period, and the highest concentrations measured were 90, 28, 26, 137, and 194 ng·L?1, respectively. This indicates the inflow of sewage containing these hormones at some points in the Piracicaba River in the State of Sao Paulo—Brazil. Results indicated little toxicity of the hormone estriol in D. magna, indicating that chronic studies with this microcrustacean are necessary.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号