首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   795篇
  免费   18篇
  国内免费   11篇
安全科学   12篇
废物处理   70篇
环保管理   74篇
综合类   91篇
基础理论   170篇
污染及防治   287篇
评价与监测   68篇
社会与环境   48篇
灾害及防治   4篇
  2023年   11篇
  2022年   55篇
  2021年   42篇
  2020年   14篇
  2019年   17篇
  2018年   43篇
  2017年   39篇
  2016年   53篇
  2015年   39篇
  2014年   54篇
  2013年   74篇
  2012年   57篇
  2011年   57篇
  2010年   40篇
  2009年   37篇
  2008年   46篇
  2007年   31篇
  2006年   30篇
  2005年   14篇
  2004年   17篇
  2003年   13篇
  2002年   11篇
  2001年   9篇
  2000年   1篇
  1999年   4篇
  1998年   2篇
  1997年   1篇
  1996年   5篇
  1995年   3篇
  1994年   1篇
  1991年   1篇
  1984年   1篇
  1957年   1篇
  1956年   1篇
排序方式: 共有824条查询结果,搜索用时 15 毫秒
721.
722.
723.

Oils and grease (O&G) have low affinity for water and represent a class of pollutants present in the dairy industry. Enzyme-mediated bioremediation using biocatalysts, such as lipases, has shown promising potential in biotechnology, as they are versatile catalysts with high enantioselectivity and regioselectivity and easy availability, being considered a clean technology (white biotechnology). Specially in the treatment of effluents from dairy industries, these enzymes are of particular importance as they specifically hydrolyze O&G. In this context, the objective of this work is to prospect filamentous fungi with the ability to synthesize lipases for application in a high-fat dairy wastewater environment. We identified and characterized the fungal species Aspergillus sclerotiorum as a good lipase producer. Specifically, we observed highest lipolytic activity (20.72 U g−1) after 96 h of fermentation using sunflower seed as substrate. The fungal solid fermented was used in the bioremediation in dairy effluent to reduce O&G. The experiment was done in kinetic from 24 to 168 h and reduced over 90% of the O&G present in the sample after 168 h. Collectively, our work demonstrated the efficiency and applicability of fungal fermented solids in bioremediation and how this process can contribute to a more sustainable wastewater pretreatment, reducing the generation of effluents produced by dairy industries.

  相似文献   
724.
This paper presents a life cycle assessment (LCA) comparing three forms of poly(lactic acid) (PLA) disposal: mechanical recycling, chemical recycling and composting. The LCA data was taken from lab scale experiments for composting and hydrolysis steps. Polymerization data in chemical recycling was obtained from computer simulation. Mechanical recycling data from lab scale were combined with the data from a plastics commercial mechanical recycling plant. The analysis considered two different product systems based on the input of the recycled PLA in the product system. Considering the categories: climate change, human toxicity and fossil depletion, the LCA showed that mechanical recycling presented the lowest environmental impact, followed by chemical recycling and composting. Among the forms of recycling, the most important input was the electricity consumption.  相似文献   
725.
726.
727.
Land use and hunting are 2 major pressures on biodiversity in the tropics. Yet, their combined impacts have not been systematically quantified at a large scale. We estimated the effects of both pressures on the distributions of 1884 tropical mammal species by integrating species’ range maps, detailed land-use maps (1992 and 2015), species-specific habitat preference data, and a hunting pressure model. We further identified areas where the combined impacts were greatest (hotspots) and least (coolspots) to determine priority areas for mitigation or prevention of the pressures. Land use was the main driver of reduced distribution of all mammal species considered. Yet, hunting pressure caused additional reductions in large-bodied species’ distributions. Together, land use and hunting reduced distributions of species by 41% (SD 30) on average (year 2015). Overlap between impacts was only 2% on average. Land use contributed more to the loss of distribution (39% on average) than hunting (4% on average). However, hunting reduced the distribution of large mammals by 29% on average; hence, large mammals lost a disproportional amount of area due to the combination of both pressures. Gran Chaco, the Atlantic Forest, and Thailand had high levels of impact across the species (hotspots of area loss). In contrast, the Amazon and Congo Basins, the Guianas, and Borneo had relatively low levels of impact (coolspots of area loss). Overall, hunting pressure and human land use increased from 1992 to 2015 and corresponding losses in distribution increased from 38% to 41% on average across the species. To effectively protect tropical mammals, conservation policies should address both pressures simultaneously because their effects are highly complementary. Our spatially detailed and species-specific results may support future national and global conservation agendas, including the design of post-2020 protected area targets and strategies.  相似文献   
728.
729.
730.
Electric arc furnace (EAF) steel slag can be used as an alternative high-quality material in road construction. Although asphalts with slag aggregates have been recognized as environmentally acceptable, there is a lack of data concerning the potential leaching of toxic Cr(VI) due to the highly alkaline media of EAF slag. Leaching of selected water extractable metals from slag indicated elevated concentrations of total chromium and Cr(VI). To estimate the environmental impacts of asphalt mixes with slag, leachability tests based on diffusion were performed using pure water and salt water as leaching agents. Compact and ground asphalt composites with natural aggregates, and asphalt composites in which the natural aggregates were completely replaced by slag were prepared. The concentrations of total chromium and Cr(VI) were determined in leachates over a time period of 6 mo. After 1 and 6 mo, the concentrations of some other metals were also determined in the leachates. The results indicated that chromium in leachates from asphalt composites with the addition of slag was present almost solely in its hexavalent form. However, the concentrations were very low (below 25 μg L) and did not represent an environmental burden. The leaching of other metals from asphalt composites with the addition of slag was negligible. Therefore, the investigated EAF slag can be considered as environmentally safe substitute for natural aggregates in asphalt mixes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号