首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1483篇
  免费   47篇
  国内免费   23篇
安全科学   61篇
废物处理   65篇
环保管理   321篇
综合类   124篇
基础理论   473篇
环境理论   4篇
污染及防治   296篇
评价与监测   106篇
社会与环境   83篇
灾害及防治   20篇
  2023年   11篇
  2022年   25篇
  2021年   33篇
  2020年   26篇
  2019年   30篇
  2018年   38篇
  2017年   51篇
  2016年   54篇
  2015年   51篇
  2014年   53篇
  2013年   128篇
  2012年   71篇
  2011年   120篇
  2010年   71篇
  2009年   87篇
  2008年   103篇
  2007年   94篇
  2006年   77篇
  2005年   56篇
  2004年   55篇
  2003年   51篇
  2002年   33篇
  2001年   15篇
  2000年   14篇
  1999年   19篇
  1998年   15篇
  1997年   14篇
  1996年   18篇
  1995年   13篇
  1994年   18篇
  1993年   13篇
  1992年   15篇
  1991年   8篇
  1990年   5篇
  1989年   8篇
  1988年   6篇
  1987年   3篇
  1986年   5篇
  1985年   2篇
  1984年   3篇
  1983年   6篇
  1982年   6篇
  1981年   6篇
  1980年   7篇
  1978年   4篇
  1976年   2篇
  1975年   3篇
  1973年   2篇
  1959年   1篇
  1957年   1篇
排序方式: 共有1553条查询结果,搜索用时 125 毫秒
451.
The growing interest in geologic carbon sequestration has highlighted the need for more data on how well cements react to CO2 exposure. This paper describes a series of experiments that was conducted to examine the effects of flowing carbonated brine on well cements. Class H cement pastes were exposed to the ranges of temperature (20–50 °C) and pH (2.4–5) characteristic of geosequestration conditions at a depth of about 1 km. The exposed cements and the reactor effluents were analyzed using multiple techniques including optical microscopy, X-ray diffraction, EPMA, and ICP-OES. The results showed that if the solution was pre-equilibrated with calcium carbonate, as would be expected in a limestone formation, there was no detectable attack. However, under the pH and temperature conditions to be expected in a sandstone formation, the initial rate of attack was on the order of millimeters per month. The outer layers of the cements reacted under sandstone-like conditions were fully degraded based on the results of the XRD and EPMA analyses. Inside the degraded layers there was a calcium carbonate-rich layer, a layer depleted of calcium hydroxide, and an unreacted cement core. The rate of degradation of the cement in these experiments was controlled by the rate of dissolution of the calcium carbonate-rich layer, after its formation, and diffusion through the fully degraded layers.  相似文献   
452.
Organic acids present in the rhizosphere of growing plants are widely recognized to be responsible for dissolving the solid phase metals in the soil and making them available for plant absorption. We proposed a root exudates-based model to assess the long-term phytoavailability of metals in biosolids-amended soils. The phytoavailability of biosolids-borne metals was defined in terms of a capacity factor and an intensity factor. The plant available metal pool, C0 (capacity factor, mg kg−1), can be estimated by fitting the successive organic acids extraction data to an exponential decay kinetic equation. The field metal removal rate, k (intensity factor, yr−1), can be estimated from the successive extraction-based metal release rate through an effective annual organic acid production in the rhizosphere which was found to be characteristic of plant species. The protocol was successfully used to assess the long-term phytoavailability of metals in biosolids-amended soil from two biosolids land application sites.  相似文献   
453.
PROBLEM: While agricultural injury has been identified among the major causes of occupational injury mortality and morbidity, data have been limited pertinent to the magnitude, consequences, and potential risk factors for animal-related injuries -- a major source of morbidity among agricultural operations. METHODS: Demographics, exposure, and injury data were collected for 1999 and 2001 among agricultural households in a five-state region. Causal models facilitated survey design, data analyses, and interpretation of results; directed acyclic graphs guided multivariate modeling. RESULTS: From 7,420 households (84% response of eligible), a total of 5,045 injury events were reported; 1,016 (20.1%) were animal-related. Multivariate analyses revealed increased risks for those <20 years; residents of all states compared to Minnesota; all age groups compared to 0-4 years; >0 hours worked; and prior agricultural injury history. For those 20+ years, increased risks were identified for: South Dakota residents; males; >0 hours worked; and prior agricultural injury history. For those cases <20 and 20+ years of age, 58% and 46%, respectively, resulted in lost work time on their agricultural operations (31% and 50%, one week or more). CONCLUSIONS: Animal-related injury has a major impact on the agricultural industry. Results serve as a basis for interventions and further research. IMPACT ON INDUSTRY: The impact of animal-related injuries on the agricultural industry appears significant; among age groups <20 and 20+, 85% and 82%, respectively, had some resulting restriction. For all events combined, 29% and 30%, respectively, involved restriction from one week to 3+ months; 12% and 15% involved restriction for one month or more. Among those <20 and 20+ years of age, 58% and 46%, respectively, lost work time on their own agricultural operation as a result of injuries associated with their own operation; 22% and 15% lost one week or more. Moreover, of the non-agriculture-related injuries, 31% and 50% resulted in lost work time on their own operation; 15% and 28%, respectively, lost one week or more. Restrictions such as these can affect the productivity of the operation, resulting in financial impacts, especially on small operations that have few people to manage the required tasks.  相似文献   
454.
Most states in the USA have adopted P Indexing to guide P-based management of agricultural fields by identifying the relative risk of P loss at farm and watershed scales. To a large extent, this risk is based on hydrologic principles that frequently occurring storms can initiate surface runoff from fields. Once initiated, this hydrological pathway has a high potential to transport P to the stream. In regions where hydrologically active areas of watersheds vary in time and space, surface runoff generation by "saturation excess" has been linked to distance from stream, with larger events resulting in larger contributing distances. Thus, storm-return period and P loss from a 39.5-ha mixed-land-use watershed in Pennsylvania was evaluated to relate return-period thresholds and distances contributing P to streams. Of 248 storm flows between 1997 and 2006, 93% had a return period of 1 yr, contributing 47% of total P (TP) export, while the largest two storms (10-yr return period) accounted for 23% of TP export. Contributing distance thresholds for the watershed were determined (50-150 m) for a range of storm-return periods (1-10 yr) from hydrograph analysis. By modifying storm-return period thresholds in the P Index and thereby contributing distance, it is possible to account for greater risk of P loss during large storms. For instance, increasing return period threshold from 1 (current P indices) to 5 yr, which accounted for 67% of TP export, increased the P-management restricted area from 20 to 58% of the watershed. An increase in impacted area relative to a decreased risk of P loss creates a management-policy dilemma that cannot be ignored.  相似文献   
455.
One of the most important considerations when optimizing a spray application for maximum efficacy and minimum drift is the selection of the optimum droplet size spectrum (Hewitt, A. J., 1997. The importance of droplet size in agricultural spraying. Atomization and Sprays, 7(3), 235–244). Applicators are faced with an extensive selection of nozzle types, tank mixes and adjuvants. The present paper discusses the way that the tank mix and application variables interact to produce specific spray characteristics of droplet size spectrum, coverage and performance in total spray efficiency. Experimental data investigating the effects of liquid physical properties such as dynamic surface tension, shear and extensional viscosity are described. Spray formation from emulsions, surfactants and oils is also discussed. Atomization studies conducted in wind tunnels using a wide range of atomizer and nozzle types under different operating conditions are discussed. Empirical models for predicting atomization and drift of sprays are described with emphasis on their development and practical use for spray optimization.  相似文献   
456.
Abstract: In northern regions, large volumes of water are needed for activities such as winter road construction. Such withdrawals, particularly from small lakes, can reduce oxygen concentrations and water levels, potentially affecting aquatic organisms. Withdrawal limits have been developed by regulatory agencies, but are largely theoretical. Water withdrawal thresholds were tested in two small lakes by removing 10% and 20% of their respective under‐ice volumes and comparing oxygen parameters, temperature, over‐wintering habitat, and northern pike (Esox lucius) abundance to reference conditions. Because of a milder winter, oxygen parameters were elevated in reference lakes in the period following withdrawal compared to the prewithdrawal period. The 10% withdrawal resulted in a ?0.2 m shift in the oxygen concentration profile at 4 mg/l in that lake, but had no effect on total volume‐weighted oxygen, or volume of over‐wintering habitat. In contrast, the 20% withdrawal caused 0.7 m reduction in the oxygen concentration profile at 4 mg/l compared to the previous year, a 26% decline in the volume‐weighted oxygen concentration, and a 23% reduction in the volume of over‐wintering habitat compared to prewithdrawal conditions. Water temperatures were slightly (≤ 10%) colder in the upper strata in the year following the withdrawal in both withdrawal and reference lakes. Northern pike abundance was not impacted by water withdrawals in either of the lakes. The results of this study show that the effects of water withdrawal on the parameters investigated reflected the characteristics of the lakes, and would therefore be expected to vary from lake to lake. Policy development to mitigate impacts must therefore reflect the site‐specific nature of water withdrawal.  相似文献   
457.
Abstract: Hydrologic monitoring in a small forested and mountainous headwater basin in Niigata Prefecture has been undertaken since 2000. An important characteristic of the basin is that the hydrologic regime contains pluvial elements year‐round, including rain‐on‐snow, in addition to spring snowmelt. We evaluated the effect of different snow cover conditions on the hydrologic regime by analyzing observed data in conjunction with model simulations of the snowpack. A degree‐day snow model is presented and applied to the study basin to enable estimation of the basin average snow water equivalent using air temperature at three representative elevations. Analysis of hydrological time series data and master recession curves showed that flow during the snowmelt season was generated by a combination of ground water flow having a recession constant of 0.018/day and diurnal melt water flow having a recession constant of 0.015/hour. Daily flows during the winter/snowmelt season showed greater persistence than daily flows during the warm season. The seasonal water balance indicated that the ratio of runoff to precipitation during the cold season (December to May) was about 90% every year. Seasonal snowpack plays an important role in defining the hydrologic regime, with winter precipitation and snowmelt runoff contributing about 65% of the annual runoff. The timing of the snowmelt season, indicated by the date of occurrence of the first significant snowmelt event, was correlated with the occurrence of low flow events. Model simulations showed that basin average snow water equivalent reached a peak around mid‐February to mid‐March, although further validation of the model is required at high elevation sites.  相似文献   
458.
Dam Rv  Hogan A  Harford A  Markich S 《Chemosphere》2008,73(3):305-313
The decommissioned Mount Todd gold mine, located in the wet-dry tropics of northern Australia, consists of a large waste water inventory and an acid rock drainage problem, which has the potential to impact upon freshwater ecosystems of the Edith River catchment. The toxicity of retention pond 1 (RP1) water was determined using six local freshwater species (duckweed, alga, cladoceran, snail, hydra and a fish). RP1 water was very toxic to all species, with the percentage dilution of RP1 water inhibiting 10% of organism response (IC(10)), or lethal to 5% of individuals (LC(5)), ranging from 0.007 to 0.088%. The percentage dilution of RP1 water inhibiting 50% of organism response (IC(50)), or lethal to 50% of individuals (LC(50)), ranged from 0.051% to 0.58%. Based on chemical analyses and geochemical speciation modelling of the test waters, Cu, Zn and Al were the most likely toxic components at acidic dilutions (i.e. 1%), while Cu and Zn were the most likely toxic components at 0.1% RP1 water, where pH was 6.5. Species sensitivity distributions (SSDs) were used to predict dilutions of RP1 water that would protect or unacceptably affect the downstream aquatic ecosystems. A dilution ratio of 1 part RP1 water to 20000 parts Edith River water (0.005% RP1 water) was calculated to be required for the protection of at least 95% of species. This information can be used in conjunction with field chemical and biological data to better predict the ecological risks of RP1 waste water downstream of the Mount Todd mine.  相似文献   
459.
A two-phase partitioning bioreactor (TPPB) consisting of an aqueous phase containing a bacterial consortium and a polymeric phase of silicone rubber pellets (solid volume fraction 0.1) was used to treat a gaseous waste stream containing benzene, toluene, ethylbenzene and o-xylene (BTEX). The function of the solid polymer phase was to absorb/desorb the gaseous volatile organic compounds providing a buffering effect to protect the cells from high transient loadings and to sequester the BTEX for subsequent degradation. The TPPB was subjected to high and fluctuating inlet loadings of BTEX in the form of 4h step changes of 2, 4, 6 and 10 times the nominal inlet loading of 60 gm(-3) h(-1) total BTEX in approximately equal amounts, and removal efficiencies and elimination capacities were determined. It was found that overall removal efficiencies of greater than 95% can be achieved while obtaining overall elimination capacities of up to 282 gm(-3) h(-1) during transient operation and TPPB operation succumbs to toxic substrate levels between step changes of 6 and 10 times the nominal loading value (360-600 gm(-3) h(-1)). BTEX concentrations in the aqueous phase and the polymer phase of the TPPB were monitored throughout the imposed step changes to determine the extent to which the sequestering phase can buffer the aqueous phase from BTEX. With the polymer phase comprising only 10% of the total working volume of the reactor, the polymer beads accounted for up to 93%, 91% and 70% of the total BTEX present in the working volume for step changes of 2, 4 and 6 times the nominal loading, respectively.  相似文献   
460.
A continuous-flow anaerobic column experiment was conducted to evaluate the reductive dechlorination of tetrachloroethene (PCE) in Hanford aquifer material after bioaugmentation with the Evanite (EV) culture. An influent PCE concentration of 0.09 mM was transformed to vinyl chloride (VC) and ethene (ETH) within a hydraulic residence time of 1.3 days. The experimental breakthrough curves were described by the one-dimensional two-site-nonequilibrium transport model. PCE dechlorination was observed after bioaugmentation and after the lactate concentration was increased from 0.35 to 0.67 mM. At the onset of reductive dehalogenation, cis-dichloroethene (c-DCE) concentrations in the column effluent exceeded the influent PCE concentration indicating enhanced PCE desorption and transformation. When the lactate concentration was increased to 1.34 mM, c-DCE reduction to vinyl chloride (VC) and ethene (ETH) occurred. Spatial rates of PCE and VC transformation were determined in batch-incubated microcosms constructed with aquifer samples obtained from the column. PCE transformation rates were highest in the first 5 cm from the column inlet and decreased towards the column effluent. Dehalococcoides cell numbers dropped from approximately 73.5% of the total Bacterial population in the original inocula, to about 0.5% to 4% throughout the column. The results were consistent with estimates of electron donor utilization, with 4% going towards dehalogenation reactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号