首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1643篇
  免费   53篇
  国内免费   26篇
安全科学   70篇
废物处理   69篇
环保管理   364篇
综合类   168篇
基础理论   510篇
环境理论   4篇
污染及防治   320篇
评价与监测   111篇
社会与环境   85篇
灾害及防治   21篇
  2023年   12篇
  2022年   31篇
  2021年   36篇
  2020年   36篇
  2019年   34篇
  2018年   40篇
  2017年   58篇
  2016年   65篇
  2015年   53篇
  2014年   58篇
  2013年   147篇
  2012年   79篇
  2011年   130篇
  2010年   74篇
  2009年   90篇
  2008年   108篇
  2007年   99篇
  2006年   78篇
  2005年   56篇
  2004年   57篇
  2003年   54篇
  2002年   36篇
  2001年   19篇
  2000年   15篇
  1999年   22篇
  1998年   15篇
  1997年   15篇
  1996年   20篇
  1995年   13篇
  1994年   20篇
  1993年   16篇
  1992年   16篇
  1991年   8篇
  1990年   5篇
  1989年   9篇
  1988年   8篇
  1987年   3篇
  1986年   5篇
  1984年   3篇
  1983年   7篇
  1982年   7篇
  1981年   7篇
  1980年   7篇
  1978年   5篇
  1975年   3篇
  1937年   3篇
  1933年   2篇
  1931年   2篇
  1929年   3篇
  1928年   2篇
排序方式: 共有1722条查询结果,搜索用时 15 毫秒
81.
82.
On the basis of currently available data, approximately 97% of generator-related carbon monoxide (CO) fatalities are caused by operating currently marketed, carbureted spark-ignited gasoline-powered generators (not equipped with emission controls) in enclosed spaces. To better understand and to reduce the occurrence of these fatalities, research is needed to quantify CO generation rates, develop and test CO emission control devices, and evaluate CO transport and exposure when operating a generator in an enclosed space. As a first step in these efforts, this paper presents measured CO generation rates from a generator without any emission control devices operating in an enclosed space under real weather conditions. This study expands on previously published information from the U.S. Consumer Product Safety Commission. Thirteen separate tests were conducted under different weather conditions at half and full generator load settings. It was found that the CO level in the shed reached a maximum value of 29,300 +/- 580 mg/m3, whereas the oxygen (O2) was depleted to a minimum level of 16.2 +/- 0.02% by volume. For the test conditions of real weather and generator operation, the CO generation and the O2 consumption could be expressed as time-averaged generation/consumption rates. It was also found that the CO generation and O2 consumption rates can be correlated to the O2 levels in the space and the actual load output from the generator. These correlations are shown to agree well with the measurements.  相似文献   
83.
Liquid manure storages are a significant source of methane (CH4) emissions. Farmers commonly agitate (stir) liquid manure prior to field application to homogenize nutrients and solids. During agitation, manure undergoes mechanical stress and is exposed to the air, disrupting anaerobic conditions. This on-farm study aimed to better understand the effects of agitation on CH4 emissions, and explore the potential for intentional agitation (three times) to disrupt the exponential increase of CH4 emissions in spring and summer. Results showed that agitation substantially increased manure temperature in the study year compared to the previous year, particularly at upper- and mid-depths of the stored manure. The temporal pattern of CH4 emissions was altered by reduced emissions over the subsequent week, followed by an increase during the second week. Microbial analysis indicated that the activity of archaea and methanogens increased after each agitation event, but there was little change in the populations of methanogens, archaea, and bacteria. Overall, CH4 emissions were higher than any of the previous three years, likely due to warmer manure temperatures that were higher than the previous years (despite similar air temperatures). Therefore, intermittent manure agitation with the frequency, duration, and intensity used in this study is not recommended as a CH4 emission mitigation practice.

Implications: The potential to mitigate methane emissions from liquid manure storages by strategically timed agitation was evaluated in a detailed farm-scale study. Agitation was conducted with readily-available farm equipment, and targeted at the early summer to disrupt methanogenic communities when CH4 emissions increase exponentially. Methane emissions were reduced for about one week after agitation. However, agitation led to increased manure temperature, and was associated with increased activity of methanogens. Overall, agitation was associated with similar or higher methane emissions. Therefore, agitation is not recommended as a mitigation strategy.  相似文献   
84.
Many energy conservation strategies for residences involve reducing house air exchange rates. Reducing the air exchange rate of a house can cause an increase in pollutant levels if there is an indoor pollution source and if the indoor pollutant source strength remains constant. However, if the indoor pollutant source strength can also be reduced, then it is possible to maintain or even improve indoor air quality. Increasing the insulation level of a house is a means of achieving energy conservation goals and, in addition, can reduce the need for space heating and thereby reduce the pollutant source strengths of combustion space heaters such as unvented kerosene space heaters, unvented gas space heaters, and wood stoves. In this paper, the indoor air quality trade-off between reduced infiltration and increased insulation in residences is investigated for combustion space heaters. Two similar residences were used for the experiment. One residence was used as a control and the other residence had infiltration and insulation levels modified. An unvented propane space heater was used as the source in this study. A model was developed to describe the dependence of both indoor air pollution levels and the appliance source strengths on house air exchange rates and house insulation levels. Model parameters were estimated by applying regression techniques to the data. Results show that indoor air pollution levels in houses with indoor combustion space heating pollution sources can be held constant (or lowered) by reducing the thermal conductance by an amount proportional to (or greater than) the reduction of the air exchange rate.  相似文献   
85.
ABSTRACT

Combustion experiments were carried out on four different residual fuel oils in a 732-kW boiler. PM emission samples were separated aerodynamically by a cyclone into fractions that were nominally less than and greater than 2.5 |j.m in diameter. However, examination of several of the samples by computer-controlled scanning electron microscopy (CCSEM) revealed that part of the PM2.5 fraction consists of carbonaceous cenospheres and vesicular particles that range up to 10 |j.m in diameter. X-ray absorption fine structure (XAFS) spectroscopy data were obtained at the S, V, Ni, Fe, Cu, Zn, and As K-edges and at the Pb L-edge. Deconvolution of the X-ray absorption near edge structure (XANES) region of the S spectra established that the dominant molecular forms of S present were sulfate (26-84% of total S) and thiophene (13-39% of total S). Sulfate was greater in the PM2.5 samples than in the PM25+ samples. Inorganic sulfides and elemental sulfur were present in lower percentages. The Ni XANES spectra from all of the samples agreed fairly well with that of NiSO4, while most of the V spectra closely resembled that of vanadyl sulfate (VO?SO4?xH2O). The other metals investigated (i.e., Fe, Cu, Zn, and Pb) also were present predominantly as sulfates. Arsenic was present as an arsen-ate (As+5). X-ray diffraction patterns of the PM2.5 fraction exhibit sharp lines due to sulfate compounds (Zn, V, Ni, Ca, etc.) superimposed on broad peaks due to amorphous carbons. All of the samples contain a significant organic component, with the loss on ignition (LOI) ranging from 64 to 87% for the PM2.5 fraction and from 88 to 97% for the PM2.5+ fraction. Based on 13C nuclear magnetic resonance (NMR) analysis, the carbon is predominantly condensed in graphitic structures. Aliphatic structure was detected in only one of seven samples examined.  相似文献   
86.
Factors controlling the transport of geogenically-derived arsenic from a coastal acid sulfate soil into downstream sediments are identified in this study with both solid-phase associations and aqueous speciation clearly critical to the mobility and toxicity of arsenic. The data from both sequential extractions and X-ray adsorption spectroscopy indicate that arsenic in the unoxidised Holocene acid sulfate soils is essentially non-labile in the absence of prolonged oxidation, existing primarily as arsenopyrite or as an arsenopyrite-like species, likely arsenian pyrite. Anthropogenically-accelerated pedogenic processes, which have oxidised this material over time, have greatly enhanced the potential bioavailability of arsenic, with solid-phase arsenic almost solely present as As(V) associated with secondary Fe(III) minerals present. Analyses of downstream sediments reveal that a portion of the arsenic is retained as a mixed As(III)/As(V) solid-phase, though not at levels considered to be environmentally deleterious. Determination of arsenic speciation in pore waters using high performance liquid chromatography/Inductively Coupled Plasma-Mass Spectrometry shows a dominance of As(III) in upstream pore waters whilst an unidentified As species reaches comparative levels within the downstream, estuarine locations. Pore water As(V) was detected at trace concentrations only. The results demonstrate the importance of landscape processes to arsenic transport and availability within acid sulfate soil environments.  相似文献   
87.
Using meteorological and electricity demand data for a 4-year period, electricity demand in Shetland was modeled to provide an estimate of the demand over a 30-year period from 1 January 1981. That modeled demand was then compared to estimated wind power output over the same period using the WAsP model. The wind farm output was estimated for a range of sizes of wind farm up to the consented 370 MW Viking Wind Farm in Shetland. Some wind power was available for 94% of the time and the 370 MW wind farm would meet 100% of demand for nearly 80% of the time. The statistics of single and accumulated deficits were calculated for a range of wind farms and estimates of the amount of additional generation capacity and additional power requirements were assessed. The study suggests that with storage, wind power in Shetland could meet all electricity demand in Shetland at around £130 to £150/MWh (excluding subsidy) and with a grid connection allowing the sale of excess power, those costs could be reduced.  相似文献   
88.
Changing climate and growing water demand are increasing the need for robust streamflow forecasts. Historically, operational streamflow forecasts made by the Natural Resources Conservation Service have relied on precipitation and snow water equivalent observations from Snow Telemetry (SNOTEL) sites. We investigate whether also including SNOTEL soil moisture observations improve April‐July streamflow volume forecast accuracy at 0, 1, 2, and 3‐month lead times at 12 watersheds in Utah and California. We found statistically significant improvement in 0 and 3‐month lead time accuracy in 8 of 12 watersheds and 10 of 12 watersheds for 1 and 2‐month lead times. Surprisingly, these improvements were insensitive to soil moisture metrics derived from soil physical properties. Forecasts were made with volumetric water content (VWC) averaged from October 1 to the forecast date. By including VWC at the 0‐month lead time the forecasts explained 7.3% more variability and increased the streamflow volume accuracy by 8.4% on average compared to standard forecasts that already explained an average 77% of the variability. At 1 to 3‐month lead times, the inclusion of soil moisture explained 12.3‐26.3% more variability than the standard forecast on average. Our findings indicate including soil moisture observations increased statistical streamflow forecast accuracy and thus, could potentially improve water supply reliability in regions affected by changing snowpacks.  相似文献   
89.
Remote marine environments such as many parts of the Great Barrier Reef (GBR) and the Antarctic are often assumed to be among the most pristine natural habitats. While distance protects them from many sources of pollution, recent studies have revealed extremely high concentrations of organotins in areas associated with shipping activities. Sediments at sites of ship groundings on the GBR have been found to contain up to 340,000 microg Sn kg(-1). Very high concentrations (up to 2290 microg Sn kg(-1)) have been detected in nearshore Antarctic sediments adjacent to channels cut through sea ice by ice-breaking vessels. In both cases, the bulk of the contamination is associated with flakes of antifouling paint abraded from vessel hulls, resulting in patchy but locally intense contamination of sediments. These particulates are likely to continue releasing organotins, rendering grounding sites and ice-breaking routes point-sources of contamination of surrounding environments. While the areas exposed to biologically-harmful concentrations of leached chemicals are likely to be limited in extent (1000-10,000 m(2)), deposition of antifouling paints constitutes a persistent ecological risk in otherwise pristine marine environments of high conservation value. The risk of contamination of GBR and Antarctic sediments by organotins needs to be considered against an important alternative risk: that less effective antifouling of ships hulls may increase the frequency of successful invasions by non-indigenous species. Additional options to minimise ecological risk include accident prevention and reducing organotin contamination from grounding sites through removal or treatment of contaminated sediments, as has been done at some sites in the GBR.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号