首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17222篇
  免费   188篇
  国内免费   140篇
安全科学   389篇
废物处理   699篇
环保管理   2168篇
综合类   3747篇
基础理论   4042篇
环境理论   9篇
污染及防治   4231篇
评价与监测   1110篇
社会与环境   1089篇
灾害及防治   66篇
  2022年   131篇
  2021年   152篇
  2019年   129篇
  2018年   235篇
  2017年   238篇
  2016年   362篇
  2015年   283篇
  2014年   408篇
  2013年   1199篇
  2012年   461篇
  2011年   717篇
  2010年   533篇
  2009年   629篇
  2008年   731篇
  2007年   762篇
  2006年   671篇
  2005年   556篇
  2004年   575篇
  2003年   558篇
  2002年   514篇
  2001年   632篇
  2000年   403篇
  1999年   310篇
  1998年   196篇
  1997年   219篇
  1996年   238篇
  1995年   241篇
  1994年   248篇
  1993年   227篇
  1992年   209篇
  1991年   211篇
  1990年   200篇
  1989年   177篇
  1988年   174篇
  1987年   158篇
  1986年   158篇
  1985年   150篇
  1984年   172篇
  1983年   173篇
  1982年   178篇
  1981年   150篇
  1980年   140篇
  1979年   124篇
  1978年   138篇
  1977年   116篇
  1976年   105篇
  1975年   109篇
  1974年   119篇
  1971年   98篇
  1967年   101篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
61.
Measurements of gaseous H2O2 and peroxyacetyl nitrate (PAN) concentrations in air are given for a site in rural southern England over an approximately 4-year period. In both cases the data show both diurnal and seasonal patterns. Temperature and wind direction had clear influences on the recorded concentrations of both species. There was an indication of increasing H2O2 concentrations with time. The use of a two-dimensional global model confirmed that this would be expected to occur alongside growth in ozone formation. It is suggested that, during photochemical episodes, the sequential build-up of ozone, PAN and H2O2 could be important in influencing the ability of vegetation to resist the effects of aggressive pollutants.  相似文献   
62.
Removal of ozone at terrestrial surfaces provides a major sink for tropospheric ozone and, therefore, a constraint on the peak concentrations achieved during photochemical episodes. This study reports results from 5 years of almost continuous measurements of vertical profiles of ozone and related meteorological variables over a mature spruce forest in Bavaria. Deposition velocities calculated from flux/gradient and eddy correlation flux measurements have been compared with estimates based on a resistance model and yield satisfactory agreement during fine weather conditions. The results also suggest that biogenic emissions of reactive hydrocarbons from the forest influence the vertical profile of ozone.  相似文献   
63.
There is some evidence from southern Britain that shallow groundwaters in non-carbonate lithologies may be affected by acidic deposition. To investigate this, interstitial water profiles down to 12 m have been obtained from unsaturated sands or semi-consolidated sandstones from the Folkestone Beds (Lower Greensand) of Surrey and the Sherwood Sandstone of the West Midlands. The pH of the interstitial waters generally increased with depth and reflected an increase in the base saturation of the exchange complex. Beneath the highly acidic surface soil horizons (pH 3.0-3.5), interstitial waters with a pH of 4.0-4.5 were found down to depths of several metres. The pH progressively increased to around pH 5.5 because of base cation desorption and the weathering of silicate minerals. High concentrations of aluminium (10-20 mg litre(-1)) and other metals (Fe, Mn, Cu, Ni, Co, Zn, Be) were found in the interstitial water in the upper unsaturated zone. Most metal concentrations were strongly pH-dependent but also reflected the geochemical characteristics of the parent sands or sandstones. H+ and trace element concentrations were slightly higher beneath areas of afforestation than beneath heathland. The downward fluxes of solutes have been estimated using rainfall-derived chloride as a non-reactive solute. The profiles retain a record of 10-20 years input allowing the past inputs from SO4 and other species to be estimated using solute/chloride ratios. Cation exchange sites are probably depleted over a period of decades and there can be a significant decrease in the unsaturated zone pH as a result of increased or sustained acidic deposition. The shallow groundwater environment (0-15 m) in non-carbonate terrains is therefore a sensitive environment where high metal concentrations may be generated and may ultimately lead to water quality problems in shallow water supplies.  相似文献   
64.
65.
66.
Reversible double water in oil in water (W/O/W) emulsions were developed to contain subsurface hydrocarbon spills during their remediation using surfactant flushing. Double emulsions were prepared by emulsifying CaCl2 solutions in canola oil, and subsequently by emulsifying the W/O emulsions in aqueous sodium alginate solutions. The formation of double emulsions was confirmed with confocal and optical microscopy. The double emulsions reversed and gelled when mixed with the surfactants sodium dodecyl sulfate (SDS) and cocamidopropyl betaine (CPB). Gels can act as ‘emulsion locks’ to prevent spreading of the hydrocarbon plume from the areas treated with surfactant flushing, as shown in sand column tests. Shear rheology was used to quantify the viscoelastic moduli increase (gelation) upon mixing the double emulsion with SDS and CPB. SDS was more effective than CPB in gelling the double emulsions. CPB and SDS could adsorb at the interface between water and model hydrocarbons (toluene and motor oil), lowering the interfacial tension and rigidifying the interface (as shown with a Langmuir trough). Bottle tests and optical microscopy showed that SDS and CPB produced W/O and O/W emulsions, with either toluene or motor oil and water. The emulsification of motor oil and toluene in water with SDS and CPB facilitated their flow through sand columns and their recovery. Toluene recovery from sand columns was quantitated using Gas-Chromatography Mass-Spectroscopy (GC-MS). The data show that SDS and CPB can be used both for surfactant flushing and to trigger the gelation of ‘emulsion locks’. Ethanol also gelled the emulsions at 100 mL/L.  相似文献   
67.
Two chromium removal experiments were performed in bioreactors with and without a magnetic field under the same conditions.The release of the chromium present in the biomass was tested in two experiments one with the initial pH of the medium and one with pH 4.0.The objective was to remove Cr(Ⅵ) and total Cr from the effluent,this was carried out by placing biological treatments of synthetic effluent contaminated with 100 mg/L of Cr(Ⅵ) in a bioreactor with neodymium magnets that applied a magnetic field(intensity85.4 mT) to the mixed culture.The removal of Cr(Ⅵ) was approximately 100.0% for the bioreactor with a magnetic field and 93,3% for the bioreactor without a magnetic field for9 hr of recirculation of the synthetic effluent by the bioreactor.The removal of total Cr was61.6% and 48.4%,with and without a magnetic field,respectively;for 24 hr.The desorption of Cr(VI) in the synthetic effluent was 0.05 mg/L,which is below the limit established by Brazilian legislation(0.1 mg/L) for the discharge of effluent containing Cr(Ⅵ) into bodies of water.The results obtained for the removal of chromium in synthetic effluent suggested that there was no significant influence on the viable cell count of the mixed culture.The desorption of Cr(Ⅵ) in synthetic effluent after bioadsorption of chromium by the mixed culture in the process of removal of chromium in bioreactors with and without a magnetic field was not significant in either of the experiments with different initial pHs.  相似文献   
68.

Future levels of climate change depend not only on carbon emissions but also on carbon uptake by the land and the ocean. Here we are using the Earth system model (ESM1) version of the Australian Community Climate and Earth System Simulator (ACCESS) to explore the potential and impact of removing carbon dioxide (CO2) from the atmosphere through the climate and carbon cycle reversibility experiment. This experiment builds on the standard Coupled Model Intercomparison Project (CMIP) experiment, increasing CO2 at 1% per year until 4xCO2 is reached. The atmospheric CO2 levels are then decreased at the same rate which brings the CO2 back to pre-industrial levels. We then continue to run the model with constant CO2 for another 350 years. Our analysis focuses on the response of the land carbon cycle. We find that carbon stores are largely reversible at the global scale over the timescale of changing CO2. However, carbon stores continue to decrease after CO2 returns to its initial value, and the land loses another 40 Pg of carbon (PgC) with the largest change in the tropics. It takes about 300 years beyond the period of changing CO2 for the carbon stores to recover. Interestingly, we saw strong regional variations in the strength of the land response to changing CO2. Australia showed the largest increase/decrease in biomass carbon (about 40%) and the largest variability in productivity, which was strongly correlated with rainfall. This highlights the importance of assessing the regional response to understanding the processes underlying the response and the sensitivity of these processes within each model. This understanding will benefit future multi-model analyses of this reversibility experiment. It also illustrates more generally the potential to use Earth system model experiments as part of the evaluation of proposed applications of carbon dioxide removal (CDR) technologies. As such, we recommend that these types of modelling experiments be included when mitigation policies are developed.

  相似文献   
69.
The present study tested the utilization of dead microbial biomass by two benthic deposit-feeders:Abra alba (Wood) (Mollusca: Bivalvia) andEupolymnia nebulosa (Montagu) (Annelida: Polychaeta). Clams were collected in the Canet lagoon during spring 1989. Worms were collected in the Port-Vendres harbour during spring 1989. The14C-labelled (glutamic acid, 24 h) sediment used during the study was sterilized with 1% chloroform, washed with sterile seawater, and dried (60°C; 48 h). This sterilisation procedure, called fumigation is the least harmful to the sediment (Novitsky 1986). Both clams and worms were incubated in the presence of the fumigated sediment for 5, 10, 20, and 50 h. At the end of each experiment we recorded the radioactivity in four compartments: (1) sediment, (2) dissolved organic matter (DOM), (3) CO2, and (4) animals. The radioactivity of the sediment was subdivided into five fractions: (i) soluble in 2N HCl, (ii) soluble in hot 5% trichloroacetic acid (TCA), (iii) soluble in 1N NaOH, (iv) soluble in hot 6N HCl, (v) residual (after combustion in a Leco carbon analyser). In the first set of experiments, after 20 h of incubation, 5.4 and 4.7% of the total radioactivity was taken up by clams and worms, respectively. However, a model revealed that this uptake could have been correlated with the release of radiolabelled DOM (33% of total radioactivity during the first 5 h). In order to test this assumption, we used the same protocol with three additional washes of the fumigated sediment. This resulted in a significantly lower uptake by the clams (1.9% of the total radioactivity byt = 50 h), whereas the worms exhibited an uptake similar to that in the initial experiment (5.1% of total radioactivity byt = 50 h). These results underline the importance of considering interactions with DOM when applying radiotracer techniques to the study of benthic food chains. The average ingestion rates of fumigated sediment byA. alba andE. nebulosa were 5.2 10–2 mg sediment dry wt mg–1 clam h–1 and 3.5 10–2 mg sediment dry wt mg–1 worm h–1, respectively, which is comparable to previous data reported for other deposit-feeding bivalves and polychaetes feeding on natural sediment or detritus. The low radioactivity recorded for CO2 together with the similarity of the changes in the partitioning of the radioactivity within the sediment between control experiments and experiments carried out in the presence of clams or worms suggest low assimilation efficiencies. Therefore, the present study supports the fact that dead microbial biomass does not constitute an important food source for benthic deposit-feeders.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号